Because of inversion symmetry and particle exchange, all constituents of homonuclear diatomic molecules are in a quantum mechanically non-local coherent state; this includes the nuclei and deep-lying core electrons. Hence, the molecular photoemission can be regarded as a natural double-slit experiment: coherent electron emission originates from two identical sites, and should give rise to characteristic interference patterns. However, the quantum coherence is obscured if the two possible symmetry states of the electronic wavefunction ('gerade' and 'ungerade') are degenerate; the sum of the two exactly resembles the distinguishable, incoherent emission from two localized core sites.
View Article and Find Full Text PDFThe dynamics of the photoionization of the two outermost orbitals of C(60) has been studied in the oscillatory regime from threshold to the carbon K edge. We show that geometrical properties of the fullerene electronic hull, such as its diameter and thickness, are contained in the partial photoionization cross sections by examining ratios of partial cross sections as a function of the photon wave number in the Fourier conjugated space. Evaluated in this unconventional manner photoemission data reveal directly the desired spatial information.
View Article and Find Full Text PDF