Highly ordered nanocrystal (NC) assemblies, namely, superlattices (SLs), have been investigated as materials for optical and optoelectronic devices due to their unique properties based on interactions among neighboring NCs. In particular, lead halide perovskite NC SLs have attracted significant attention owing to their extraordinary optical characteristics of individual NCs and collective emission processes like superfluorescence (SF). So far, the primary method for preparing perovskite NC SLs has been the drying-mediated self-assembly method, in which the colloidal NCs spontaneously assemble into SLs during solvent evaporation.
View Article and Find Full Text PDFThe brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance.
View Article and Find Full Text PDFNanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr NCs (and FAPbBr NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks.
View Article and Find Full Text PDFThe recent progress in nanotechnology and single-molecule spectroscopy paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction.
View Article and Find Full Text PDFSelf-assembly of colloidal nanocrystals (NCs) holds great promise in the multiscale engineering of solid-state materials, whereby atomically engineered NC building blocks are arranged into long-range ordered structures-superlattices (SLs)-with synergistic physical and chemical properties. Thus far, the reports have by far focused on single-component and binary systems of spherical NCs, yielding SLs isostructural with the known atomic lattices. Far greater structural space, beyond the realm of known lattices, is anticipated from combining NCs of various shapes.
View Article and Find Full Text PDFAtomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices. Caesium lead halide perovskite nanocrystals are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines.
View Article and Find Full Text PDFLigand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use.
View Article and Find Full Text PDFFor guiding light on a chip, it has been pivotal to use materials and process flows that allow low absorption and scattering. Based on subwavelength gratings, here, we show that it is possible to create broadband, multimode waveguides with very low propagation losses despite using a strongly absorbing material. We perform rigorous coupled-wave analysis and finite-difference time-domain simulations of integrated waveguides that consist of pairs of integrated high-index-contrast gratings.
View Article and Find Full Text PDFA common signature of nearly all nanoscale emitters is fluorescence intermittency, which is a rapid switching between "on"-states exhibiting a high photon emission rate and "off"-states with a much lower rate. One consequence of fluorescence intermittency occurring on time scales longer than the exciton decay time is the so-called delayed photon emission, manifested by a long radiative decay component. Besides their dominant fast radiative decay, fully inorganic cesium lead halide perovskite quantum dots exhibit a long fluorescence decay component at cryogenic temperatures that is often attributed to the decay of the dark exciton.
View Article and Find Full Text PDFOne of the most attractive commercial applications of semiconductor nanocrystals (NCs) is their use in lasers. Thanks to their high quantum yield, tunable optical properties, photostability, and wet-chemical processability, NCs have arisen as promising gain materials. Most of these applications, however, rely on incorporation of NCs in lasing cavities separately produced using sophisticated fabrication methods and often difficult to manipulate.
View Article and Find Full Text PDFFully inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission, and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns time scale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBrCl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 to 50 K.
View Article and Find Full Text PDFAn ensemble of emitters can behave very differently from its individual constituents when they interact coherently via a common light field. After excitation of such an ensemble, collective coupling can give rise to a many-body quantum phenomenon that results in short, intense bursts of light-so-called superfluorescence. Because this phenomenon requires a fine balance of interactions between the emitters and their decoupling from the environment, together with close identity of the individual emitters, superfluorescence has thus far been observed only in a limited number of systems, such as certain atomic and molecular gases and a few solid-state systems.
View Article and Find Full Text PDFNanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'.
View Article and Find Full Text PDFApplications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching.
View Article and Find Full Text PDFHybrid silicon nitride (SiN)-quantum-dot (QD) microlasers coupled to a passive SiN output waveguide with a 7 µm diameter and a record-low threshold density of 27 µJ cm are demonstrated. A new design and processing scheme offers long-term stability and facilitates in-depth QD material and device characterization, thereby opening new paths for optical communication, sensing, and on-chip cavity quantum optics based on colloidal QDs.
View Article and Find Full Text PDFMetal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters.
View Article and Find Full Text PDFStrain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal.
View Article and Find Full Text PDFA Bose-Einstein condensate (BEC) is a state of matter in which extensive collective coherence leads to intriguing macroscopic quantum phenomena. In crystalline semiconductor microcavities, bosonic quasiparticles, known as exciton-polaritons, can be created through strong coupling between bound electron-hole pairs and the photon field. Recently, a non-equilibrium BEC (ref.
View Article and Find Full Text PDFExciton dynamics within the band-edge state manifold of CdSe/ZnS and CdSe/CdS quantum dots (QDs) have been investigated. Low-temperature time-resolved photoluminescence (PL) experiments demonstrate that exciton relaxation is mediated by LO phonons, whereas an acoustic phonon bottleneck is observed for splitting energies lower than the optical phonon energy. This has important implications since the main source affecting exciton dephasing is considered to be a spin-flip process.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.