Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external stimuli. Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity. We show that in firing-rate networks in the balanced state, external control of recurrent dynamics, i.
View Article and Find Full Text PDFNeuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning.
View Article and Find Full Text PDFCortical neurons operate within recurrent neuronal circuits. Dissecting their operation is key to understanding information processing in the cortex and requires transparent and adequate dynamical models of circuit function. Convergent evidence from experimental and theoretical studies indicates that strong feedback inhibition shapes the operating regime of cortical circuits.
View Article and Find Full Text PDF