Publications by authors named "Raine E S Thomson"

Article Synopsis
  • - The Cytochrome P450 family of enzymes metabolizes around 80% of small molecule drugs, but genetic variants can significantly affect how these drugs are processed, leading to risks of incorrect dosing and severe side effects.
  • - Using a technique called VAMP-seq, researchers measured the protein abundance of over 7,600 single amino acid variants in CYP2C19, revealing key structural features essential for enzyme function and showcasing how variants at specific positions can impact protein levels.
  • - The study also compared variants in CYP2C19 and CYP2C9, showing that while most amino acid exchanges had little effect, certain changes in substrate recognition sites diminished abundance in CYP2C19, indicating evolutionary trade-offs between stability and
View Article and Find Full Text PDF

Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity.

View Article and Find Full Text PDF

Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases.

View Article and Find Full Text PDF
Article Synopsis
  • Ancestral sequence reconstruction is a valuable technique in molecular evolution and protein engineering, but existing methods struggle with large datasets and indel events.
  • To overcome these challenges, researchers created GRASP, which uses maximum likelihood methods and partial order graphs to efficiently analyze and infer ancestral sequences from over 10,000 members.
  • The effectiveness of GRASP was validated by predicting ancestral sequences in three enzyme families, showing that all predicted ancestors retained enzymatic activity, thus highlighting its potential for engineering biologically active proteins.
View Article and Find Full Text PDF

Natural proteins are often only slightly more stable in the native state than the denatured state, and an increase in environmental temperature can easily shift the balance toward unfolding. Therefore, the engineering of proteins to improve protein stability is an area of intensive research. Thermostable proteins are required to withstand industrial process conditions, for increased shelf-life of protein therapeutics, for developing robust 'biobricks' for synthetic biology applications, and for research purposes (e.

View Article and Find Full Text PDF

Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation.

View Article and Find Full Text PDF

The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences.

View Article and Find Full Text PDF

The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors.

View Article and Find Full Text PDF

Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions.

View Article and Find Full Text PDF