Publications by authors named "Raina Ramnath"

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs).

View Article and Find Full Text PDF

Background: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively.

View Article and Find Full Text PDF

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important.

View Article and Find Full Text PDF

The socio-economic impact of diseases associated with cognitive impairment is increasing. According to the Alzheimer's Society there are over 850,000 people with dementia in the UK, costing the UK £26 billion in 2013. Therefore, research into treatment of those conditions is vital.

View Article and Find Full Text PDF

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions.

View Article and Find Full Text PDF

The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice.

View Article and Find Full Text PDF

Endothelial cells form the inner lining of all blood vessels and play a vital role in regulating vascular permeability. This applies to the circulation in general and also to specific capillary beds including the renal glomerular capillaries. Endothelial dysfunction, including increased permeability, is a key component of diabetes-induced organ damage.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated VEGF A levels contribute to glomerular endothelial cell dysfunction and albuminuria in diabetic nephropathy, suggesting a need for protective strategies.
  • The study tested VEGFC as a counteractive agent to VEGFA, finding that it significantly reduced albumin permeability and preserved glomerular function in experimental settings.
  • Results indicate that VEGFC may offer a promising therapeutic pathway by reducing diabetic nephropathy progression and maintaining endothelial barrier integrity.
View Article and Find Full Text PDF

Aldosterone contributes to end-organ damage in heart failure and chronic kidney disease. Mineralocorticoid-receptor inhibitors limit activation of the receptor by aldosterone and slow disease progression, but side effects, including hyperkalemia, limit their clinical use. Damage to the endothelial glycocalyx (a luminal biopolymer layer) has been implicated in the pathogenesis of endothelial dysfunction and albuminuria, but to date no one has investigated whether the glomerular endothelial glycocalyx is affected by aldosterone.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new assay that measures albumin permeability in single capillaries of glomeruli, offering a more precise evaluation than traditional urinary albumin tests.
  • This novel approach was validated using confocal microscopy and provided consistent, reliable results comparable to existing data, applicable to both human and rodent glomeruli.
  • The assay successfully detected increased albumin permeability linked to conditions like endothelial glycocalyx disruption and early diabetes, highlighting its potential for advancing research in kidney diseases.
View Article and Find Full Text PDF

Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy.

View Article and Find Full Text PDF

Culture of human pancreatic islets is now routinely carried out prior to clinical islet allotransplantation, using conditions that have been developed empirically. One of the major causes of early islet destruction after transplantation is the process termed instant blood-mediated inflammatory reaction (IBMIR). The aim of this study was to develop in vitro methods to investigate IBMIR and apply them to the culture conditions used routinely in our human islet isolation laboratory.

View Article and Find Full Text PDF

The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx.

View Article and Find Full Text PDF

Damage to endothelial glycocalyx impairs vascular barrier function and may contribute to progression of chronic vascular disease. An early indicator is microalbuminuria resulting from glomerular filtration barrier damage. We investigated the contributions of hyaluronic acid (HA) and chondroitin sulfate (CS) to glomerular microvascular endothelial cell (GEnC) glycocalyx and examined whether these are modified by vascular endothelial growth factors A and C (VEGFA and VEGFC).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx.

View Article and Find Full Text PDF

Laminar shear stress (LSS), induced by flowing blood, plays a key role in determining vascular health by modulating endothelial behaviour and vascular tone. In systemic endothelium many of the beneficial effects of chronic LSS are mediated through the transcription factor Kruppel-like factor 2 (KLF2), but little is known regarding the role of chronic LSS in the renal glomerulus. We demonstrate that exposure of glomerular endothelial cells to chronic (>24h) LSS of 10 dyn/cm(2) increases phosphorylation of extra-cellular signal-related kinase 5 (ERK5) and increases expression of KLF2, leading to increased expression of the downstream molecules endothelial nitric oxide synthase (eNOS), thrombomodulin, endothelin-1 and nitric oxide.

View Article and Find Full Text PDF

Acute pancreatitis is an inflammatory disorder of the pancreas. Protein kinase C (PKC) δ plays an important role in mediating chemokine production in mouse pancreatic acinar cells. This study aims to investigate the role of PKC δ in the pathogenesis of acute pancreatitis and to explore the mechanisms through which PKC δ mediates pro-inflammatory signaling.

View Article and Find Full Text PDF

Substance P is known to play a key role in the pathogenesis of acute pancreatitis. Src family kinases (SFKs) are known to be involved in cytokine signaling. However, the involvement of SFKs in substance P-induced chemokine production and its role in acute pancreatitis have not been investigated yet.

View Article and Find Full Text PDF

Neuropeptide modulation of immune cell function is an important mechanism of neuro-immune intersystem crosstalk. Substance P (SP) is one such key neuropeptide involved. In this study, we investigated the yet unexplored cellular mechanisms of SP-mediated inflammatory responses in macrophages using a mouse macrophage-like cell line RAW 264.

View Article and Find Full Text PDF

Neurokinin A (NKA) belongs to the tachykinin neuropeptide family. Its biological functions are primarily mediated by the neurokinin (NK)-2 receptor. NKA has been implicated in several inflammatory conditions.

View Article and Find Full Text PDF

Sepsis is a complex clinical syndrome resulting from a harmful host inflammatory response to infection. Similarly, lipopolysaccharide (LPS) induced endotoxemia is marked by the activation of inflammatory responses, which can lead to shock, multiple organ damage and even death. Inflammatory mediator, chemokines are known to play an important role in the pathogenesis of sepsis and endotoxemia.

View Article and Find Full Text PDF

The neuropeptide substance P (SP), as a major mediator of neuroimmunomodulatory activity, modulates diverse functions of immune cells, including macrophages. In the current study, we focused on the yet uncertain role of SP in enhancing the inducible/inflammatory chemokine response of macrophages and the signaling mechanism involved. We studied the effect on the murine monocyte/macrophage cell line RAW 264.

View Article and Find Full Text PDF

Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFkappaB-driven chemokines.

View Article and Find Full Text PDF