The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFPurpose: Arterial spin labeling (ASL), a noninvasive magnetic resonance (MRI) perfusion sequence, holds promise in the presurgical evaluation of pediatric lesional epilepsy patients, including those with low-grade epilepsy-associated tumors (LEATs). The interpretation of ASL-derived perfusion patterns, however, presents challenges. Our study aims to elucidate these perfusion changes in children with LEATs, exploring their correlations with clinical, electroencephalography (EEG), and anatomical MRI findings.
View Article and Find Full Text PDFBackground: Neonatal encephalopathy (NE) represents a primary cause of neonatal death and neurodevelopmental impairments. In newborns with NE, cerebral hyperperfusion is related to an increased risk of severe adverse outcomes, but less is known about the link between perfusion and mild to moderate developmental impairments or developmental delay.
Methods: Using arterial spin labelling perfusion MRI, we investigated the link between perfusion in 36 newborns with NE and developmental outcome at 2 years.
Arterial spin labelling (ASL), an MRI sequence non-invasively imaging brain perfusion, has yielded promising results in the presurgical workup of children with focal cortical dysplasia (FCD)-related epilepsy. However, the interpretation of ASL-derived perfusion patterns remains unclear. Hence, we compared ASL qualitative and quantitative findings to their clinical, EEG, and MRI counterparts.
View Article and Find Full Text PDFBackground: Patients with severe congenital heart disease (CHD) are at risk for neurodevelopmental impairment. An abnormal cerebral blood supply caused by the altered cardiac physiology may limit optimal brain development. The aim of this study was to evaluate the effect of a systemic-to-pulmonary shunt, aortic arch obstruction and arterial oxygen saturation on cerebral perfusion in patients with severe CHD.
View Article and Find Full Text PDFObjective: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD).
Study Design: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores.
Spina bifida affects spinal cord and cerebral development, leading to motor and cognitive delay. We investigated whether there are associations between thalamocortical connectivity topography, neurological function, and developmental outcomes in open spina bifida. Diffusion tensor MRI was used to assess thalamocortical connectivity in 44 newborns with open spina bifida who underwent prenatal surgical repair.
View Article and Find Full Text PDFObjectives: Children with univentricular congenital heart disease undergoing staged surgical palliation are at risk for impaired neurodevelopmental (ND) outcome. Little is known about the long-term effects on brain growth until school age.
Methods: In a prospective two-centre study, consecutive patients undergoing stage I (Hybrid or Norwood) to stage III (Fontan procedure) were evaluated by 2 serial cerebral magnetic resonance imaging examinations, somatic growth and ND testing before Fontan procedure at 2 years of age (Bayley-III) and after Fontan at 6-8 years of age (Wechsler Intelligence Scale for Children-third edition).
Objectives: Although diffusion tensor imaging (DTI) may facilitate the identification of cytoarchitectural changes associated with focal cortical dysplasia (FCD), the predominant aetiology of paediatric structural epilepsy, its potential has thus far remained unexplored in this population. Here, we investigated whether DTI indices can differentiate FCD from contralateral brain parenchyma (CBP) and whether clinical features affect these indices.
Methods: In this single-centre, retrospective study, we considered children and adolescents with FCD-associated epilepsy who underwent brain magnetic resonance (MRI), including DTI.
Diencephalic syndrome is usually associated with tumors in the hypothalamic region, rarely occurring in patients with neurofibromatosis type 1 (NF1)-associated gliomas. We describe the clinical presentation and response to treatment in 3 patients with NF1 presenting with diencephalic syndrome as first symptom of optic pathway/hypothalamic glioma (OPHG). Because of the rarity of this constellation, knowledge about the clinical course and best treatment options for patients with NF1-associated OPHG and diencephalic syndrome is still limited.
View Article and Find Full Text PDFBackground: Children diagnosed with diffuse midline gliomas (DMG) have an extremely poor overall survival: 9-12 months from diagnosis with currently no curative treatment options. Given DMG molecular heterogeneity, surgical biopsies are needed for molecular profiling and as part of enrolment into molecular-based and precision medicine type clinical interventions. In this study, we describe the results of real time profiling and drug testing at the diffuse intrinsic pontine glioma/DMG Research Centre at University Children's Hospital Zurich.
View Article and Find Full Text PDFBackground: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease.
Methods: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined.
The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by , , , ) sharing a neurological/epileptic phenotype, as well as citrin deficiency () with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects.
View Article and Find Full Text PDFRadiologie (Heidelb)
December 2022
Background: Retinoblastoma is the most common malignant eye tumor in children and is associated with tumor predisposition syndrome (RB1 mutation) in up to 40% of cases. Imaging is an important part of the diagnostic workup of children with retinoblastoma both during the initial diagnosis and follow-up.
Objectives: The goal of this review is to present the current state-of-the-art regarding imaging of children with retinoblastoma, including technical background and diagnostic clues with a brief discussion of future prospects.
Objectives: The significance of intraoperative cerebral desaturation (CD) measured by near-infrared spectroscopy (NIRS) to predict neurological outcome after congenital heart surgery is uncertain. The goal of this study was to compare brain structure changes and neurodevelopmental outcome in patients with severe congenital heart disease with and without intraoperative CD.
Methods: Neonates requiring congenital heart surgery were enrolled in a cohort study.
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord).
View Article and Find Full Text PDFSinus pericranii is a rare vascular anomaly characterized by an abnormal communication between the intra- and extracranial venous systems through a calvarial defect(s). We present three cases of congenital sinus pericranii with facial involvement, emphasizing its cutaneous presentation with diagnostic pitfalls and discuss the multidisciplinary management of this vascular anomaly.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has become an essential diagnostic modality for congenital disorders of the central nervous system. Recent advancements have transformed foetal MRI into a clinically feasible tool, and in an effort to find predictors of clinical outcomes in spinal dysraphism, foetal MRI began to unveil its potential. The purpose of our review is to introduce MRI techniques to experts with diverse backgrounds, who are involved in the management of spina bifida.
View Article and Find Full Text PDFImportance: Identification of geographic population-based differences in genotype and phenotype heterogeneity are important for targeted and patient-specific diagnosis and treatment, counseling, and screening strategies.
Objective: To report disease-causing variants and their detailed phenotype in patients with bilateral congenital cataract from a single center in Switzerland and thereby draw a genetic map and perform a genotype-phenotype comparison of this cohort.
Design, Setting, And Participants: This clinical and molecular-genetic cohort study took place through the collaboration of the Department of Ophthalmology at the University Hospital Zurich and the Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.