This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2013
Recent evidence from natural environments suggests that in addition to ammonia-oxidizing bacteria, ammonia-oxidizing archaea (AOA) affiliated with Thaumarcheota, a new phylum of the domain Archaea, also oxidize ammonia to nitrite and thus participate in the global nitrogen cycle. Besides natural environments, modern data indicate the presence of amoA-encoding archaea (AEA) in wastewater treatment plants (WWTPs). To further elucidate whether AEA in WWTPs are AOA and to clarify the role of AEA in WWTPs, this paper reviews the current knowledge on this matter for wastewater engineers and people in related fields.
View Article and Find Full Text PDFIn the first two years of operation a nitrogen removal efficiency of 53% and a high average elimination rate of 1,000 g N m(-2) yr(-1) could be observed for a two-stage vertical flow (VF) constructed wetland (CW) system. The two-stage system consists of two VF beds with intermittent loading operated in series, each stage having a surface area of 10 m2. The first stage uses sand with a grain size of 2-3.
View Article and Find Full Text PDFConstructed wetlands (CWs) are known to be robust wastewater treatment systems and are therefore very suitable for small villages and single households. When nitrification is required, vertical flow (VF) CWs are widely used. This contribution compares the behaviour and treatment efficiencies of a single-stage VF CW and a two-stage VF CW system under varying operating and loading conditions according to standardized testing procedures for small wastewater treatment plants as described in the European standard EN 12566-3.
View Article and Find Full Text PDFIn a first phase of this study it was shown that the Austrian effluent standards for organic matter could not be met in winter for vertical flow (VF) beds designed for and loaded with 27 g COD.m(-2).d(-1) (3 m2 per person equivalent).
View Article and Find Full Text PDFAs the introduction and promotion of dehydrating toilets progresses, the safety of handling and reuse of their biosolids remains a question. A detailed study to understand the storage conditions and the fate of selected faecal indicators was conducted on four urine diverting dehydrating toilet units, using ash as a major additive, in Kathmandu Valley, Nepal. Presumptive Escherichia coli, total coliforms, enterococci and different fractions of Clostridium perfringens were investigated under field storage conditions.
View Article and Find Full Text PDFBy using a two-stage constructed wetland (CW) system operated with an organic load of 40 gCOD.m(-2).d(-1) (2 m2 per person equivalent) average nitrogen removal efficiencies of about 50% and average nitrogen elimination rates of 980 g N.
View Article and Find Full Text PDFSubsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland.
View Article and Find Full Text PDFIn this study, bacterial removal efficiencies of planted and unplanted subsurface vertical flow constructed wetlands are compared. Indicator organisms such as faecal coliforms (Escherichia coli, total coliforms) and enterococci, and a number of heterotrophic bacteria (heterotrophic plate counts) have been analysed from the influent and effluent of the constructed wetlands as well as at different depths (water and substrate samples). Furthermore dry matter content and total organic carbon (TOC) have been analysed and correlated.
View Article and Find Full Text PDFIn this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via (14)C leucine incorporation into bacterial biomass.
View Article and Find Full Text PDF