Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g.
View Article and Find Full Text PDFEnzymatic treatment of microalgal biomass is a promising approach for extraction of microalgal lipid, but high cost of commercially sourcing enzyme is a major drawback in industrial implementation. Present study involves extraction of eicosapentaenoic acid-rich oil from Nannochloropsis sp. biomass using low cost cellulolytic enzymes produced from Trichoderma reesei in a solid-state fermentation bioreactor.
View Article and Find Full Text PDF