Publications by authors named "Raichur Suryaprakash"

Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment +of metabolic diseases.

View Article and Find Full Text PDF

Ceramide synthases (CerS) are central enzymes required for the synthesis of ceramides and other sphingolipids. They catalyze the addition of different acyl-chains to a sphingoid base, and thus account for much of the rich diversity in the sphingolipid family. Recent studies have demonstrated that the acyl-chain is an important determinant of ceramide function, such that a small subset of ceramides (e.

View Article and Find Full Text PDF

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore.

View Article and Find Full Text PDF

Objective: Ectopic fat deposition is associated with increased tissue production of ceramides. Recent genetic mouse studies suggest that specific sphingolipid C16:0 ceramide produced by ceramide synthase 6 (CerS6) plays an important role in the development of insulin resistance. However, the therapeutic potential of CerS6 inhibition not been demonstrated.

View Article and Find Full Text PDF

Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data.

View Article and Find Full Text PDF

Inhibition of ceramide synthesis prevents diabetes, steatosis, and cardiovascular disease in rodents. Six different ceramide synthases (CerS) that differ in tissue distribution and substrate specificity account for the diversity in acyl-chain composition of distinct ceramide species. Haploinsufficiency for ceramide synthase 2 (CerS2), the dominant isoform in the liver that preferentially makes very-long-chain (C22/C24/C24:1) ceramides, led to compensatory increases in long-chain C16-ceramides and conferred susceptibility to diet-induced steatohepatitis and insulin resistance.

View Article and Find Full Text PDF

The class IIa histone deacetylases (HDACs) act as transcriptional repressors by altering chromatin structure through histone deacetylation. This family of enzymes regulates muscle development and phenotype, through regulation of muscle-specific genes including myogenin and MyoD (MYOD1). More recently, class IIa HDACs have been implicated in regulation of genes involved in glucose metabolism.

View Article and Find Full Text PDF

Homozygous staggerer mice (sg/sg) display decreased and dysfunctional retinoic acid receptor-related orphan receptor alpha (RORalpha) expression. We observed decreases in serum (and liver) triglycerides and total and high density lipoprotein serum cholesterol in sg/sg mice. Moreover, the sg/sg mice were characterized by reduced adiposity (associated with decreased fat pad mass and adipocyte size).

View Article and Find Full Text PDF

beta 1-3-Adrenoreceptor (AR)-deficient mice are unable to regulate energy expenditure and develop diet-induced obesity on a high-fat diet. We determined previously that beta2-AR agonist treatment activated expression of the mRNA encoding the orphan nuclear receptor, NOR-1, in muscle cells and plantaris muscle. Here we show that beta2-AR agonist treatment significantly and transiently activated the expression of NOR-1 (and the other members of the NR4A subgroup) in slow-twitch oxidative soleus muscle and fast-twitch glycolytic tibialis anterior muscle.

View Article and Find Full Text PDF

Retinoid-related orphan receptor gamma (RORgamma) is an orphan nuclear hormone receptor (NR) that is preferentially expressed in skeletal muscle and several other tissues, including pancreas, thymus, prostate, liver and testis. Surprisingly, the specific role of RORgamma in skeletal muscle, a peripheral tissue, has not been examined. Muscle is one of the most energy demanding tissues which accounts for ~40% of the total body mass and energy expenditure, >75% of glucose disposal and relies heavily on beta-oxidation of fatty acids.

View Article and Find Full Text PDF

The development of type 2 diabetes in obese individuals is linked to lipid accumulation in non-adipose tissues. A series of N-acetyl-L-tyrosine derivatives were synthesized and evaluated for PPAR transactivation. Compounds 4d and 4f were found to show better PPARalpha transactivation as compared to PPARgamma.

View Article and Find Full Text PDF

A novel series of l-tyrosine derivatives have been reported with potential PPARalpha/gamma dual agonistic activity. In vitro cell based PPARalpha/gamma transactivation studies have shown compound 4a and compound 4f to be the most potent PPARgamma and PPARalpha activators, respectively. Molecular docking studies performed on these series of compounds have complemented the experimental results and have led to interesting inferences.

View Article and Find Full Text PDF

The current goal in the treatment of diabetes is not only to enhance the glycemic control but also to improve the associated cardiovascular risk factors. Among many of the strategies available, a co-ligand of PPARalpha and gamma in a single molecule which combines the insulin sensitizing potential of PPARgamma and the beneficial lipid modulating properties of PPARalpha agonism, has gained attention in the recent past. Here we report the biochemical mechanism by which a dual PPAR alpha/gamma agonist Ragaglitazar (Raga) achieves this goal.

View Article and Find Full Text PDF

A series of hydroxycarbazole derivatives were synthesized and evaluated for PPAR alpha/gamma dual agonist as well as antioxidant activities. While most compounds showed good antioxidant activity, some compounds were identified as potential PPAR alpha/gamma dual agonists as well. Compounds 10a and 16 were found to be active in animal studies.

View Article and Find Full Text PDF

Molecular modeling on various well-known glitazones carrying a pyridine ring instead of benzene ring as the middle linker unit showed conformational rigidity as compared to their parent molecules. Blocking the lone pair of electrons on the pyridine N, made them flexible once again. A few representatives of these analogues were synthesized and their efficacy as PPARgamma agonists evaluated.

View Article and Find Full Text PDF

Ragaglitazar [(-) DRF 2725; NNC 61-0029] is a coligand of PPARalpha and PPARgamma. In ob/ob mice, ragaglitazar showed significant reduction in plasma glucose, triglyceride and insulin (ED50 values <0.03, 6.

View Article and Find Full Text PDF