Introduction: Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques.
Methods: In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study.
Purpose: Inappropriate stent-graft (SG) flexibility has been frequently associated with endovascular aortic repair (EVAR) complications such as endoleaks, kinks, and SG migration, especially in tortuous arteries. Stents derived from auxetic unit cells have shown some potential to address these issues as they offer an optimum trade-off between radial stiffness and bending flexibility.
Methods: In this study, we utilized an established finite element (FE)-based approach to replicate the mechanical response of a SG iliac limb derived from auxetic unit cells in a virtual tortuous iliac aneurysm using a combination of a 180° U-bend and intraluminal pressurization.
With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs.
View Article and Find Full Text PDF