Publications by authors named "Rahul V Khandare"

Understanding the role of oxido-reductase enzymes followed by deciphering the functional genes and their corresponding proteins are crucial for the speculation of molecular mechanism for azo dye degradation. In the present study, decolourization efficiency of developed microbial consortium was tested using 100 mgL reactive blue 13 (RB13) and the results showed ∼92.67% decolourization of RB13 at 48 h of incubation.

View Article and Find Full Text PDF

Microalgae hold the promise of an inexpensive and sustainable source of biofuels. The existing microalgal cultivation technologies need significant improvement to outcompete other biofuel sources such as terrestrial plants. Application of 'algomics' approaches under different abiotic stress conditions could be an effective strategy for optimization of microalgal growth and production of high-quality biofuels.

View Article and Find Full Text PDF

Intensive use of atrazine in agriculture to increase crop productivity has resulted in pollution and consequently deteriorated the environment. Three isolated bacteria, Rhodococcus sp. BCH2 (RB), Bacillus sp.

View Article and Find Full Text PDF

In situ phytoremediation of dyes from textile wastewater was carried out in a high rate transpiration system ridges (91.4 m × 1.0 m) cultivated independently with Tagetes patula, Aster amellus, Portulaca grandiflora and Gaillardia grandiflora which reduced American Dye Manufacturers Institute color value by 59, 50, 46 and 73%, respectively within 30 d compared to dye accumulated in unplanted ridges.

View Article and Find Full Text PDF

Densitometric high performance thin layer chromatography (HPTLC) quantification method was developed to validate the decolorization/biotransformation of Disperse Orange ERL and dye mixture by lichen Parmelia sp. which release several colored compounds during decolorization process, hence unable to use colorimetric estimation. Percent decolorization of Disperse Orange ERL and dye mixture by lichen Parmelia sp.

View Article and Find Full Text PDF

Introduction: Aquatic pollutant Malachite green (MG) induces oxidative stress by producing intracellular HO and associated hydroxyl, hydroxymethyl or hydroperoxide radicals in Saccharomyces cerevisiae. These radicals disturb cellular functions leading to early aging. Exogenous supply of natural antioxidants may play a crucial role as anti-aging by ensuring the cellular survival.

View Article and Find Full Text PDF

This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L) up to 91% within 48 h.

View Article and Find Full Text PDF

Fimbristylis dichotoma, Ammannia baccifera and their co-plantation consortium FA independently degraded Methyl Orange, simulated dye mixture and real textile effluent. Wild plants of F. dichotoma and A.

View Article and Find Full Text PDF

Nursery grown plants of Nerium oleander, Pogonatherum crinitum, and Portulaca oleracea were observed to remove fluoride up to 92, 80, and 73%, respectively, from NaF solution at the concentration of 10 mg L within 15 days. Concentration range of 10-50 mg L of fluoride revealed a constant decrease of removal from 92 to 51% within 15 days by N. oleander, while the biomass (one to five plants) showed enhancement in removal from 74 to 98% in 10 days.

View Article and Find Full Text PDF

Ipomoea aquatica, a macrophyte was found to degrade a highly sulfonated and diazo textile dye Brown 5R up to 94% within 72 h at a concentration of 200 mg L(-1). Induction in the activities of enzymes such as azoreductase, lignin peroxidase, laccase, DCIP reductase, tyrosinase, veratryl alcohol oxidase, catalase and superoxide dismutase was observed in leaf and root tissue in response to Brown 5R exposure. There was significant reduction in contents of chlorophyll a (25%), chlorophyll b (17%) and carotenoids (30%) in the leaves of plants.

View Article and Find Full Text PDF

In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h.

View Article and Find Full Text PDF

Bioremediation is one of the milestones achieved by the biotechnological innovations. It is generating superior results in waste management such as removal of textile dyes, which are considered xenobiotic compounds and recalcitrant to biodegradation. In the present bioremedial approach, Brevibacillus laterosporus was used as an effective microbial tool to decolorize disperse dye Disperse Red 54 (DR54).

View Article and Find Full Text PDF

Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms.

View Article and Find Full Text PDF

Alternanthera philoxeroides Griseb. a macrophyte was found to degrade a highly sulfonated textile dye Remazol Red (RR) completely within 72 h at a concentration of 70 mg L(-1). An induction in the activities of azoreductase and riboflavin reductase was observed in root and stem tissues; while the activities of lignin peroxidase, laccase and DCIP reductase were induced in leaf tissues.

View Article and Find Full Text PDF

A static hydroponic bioreactor using nursery grown plants of Pogonatherum crinitum along with immobilized Bacillus pumilus cells was developed for the treatment of textile wastewater. Independent reactors with plants and immobilized cells were also kept for performance and efficacy evaluation. The effluent samples characterized before and after their treatment showed that the plant-bacterial consortium reactor was more efficient than those of individual plant and bacterium reactors.

View Article and Find Full Text PDF

A phyto-tunnel was developed using a drilled PVC pipe. It was planted with Portulaca grandiflora and used for the treatment of a textile effluent and a dye mixture. COD, BOD, TOC, conductivity, turbidity, total suspended solids and total dissolved solids of the textile effluent, and dye mixture were decreased by 57, 45, 43, 52, 76, 77 and 24 % within 96 h, and 49, 62, 41, 63, 58, 71 and 33 %, within 60 h, respectively, after treatment.

View Article and Find Full Text PDF

This study reveals the beneficial synergistic phytoremediation potential of Petunia grandiflora Juss. with its rhizospheric bacterial isolate Bacillus pumilus strain PgJ to decolorize reactive Navy Blue RX (NBRX) dye by their active enzymatic machinery. In vitro cultures of P.

View Article and Find Full Text PDF

The objective of the present work was to develop a plant-bacterial synergistic system for efficient treatment of the textile effluents. Decolorization of the dye Scarlet RR and a dye mixture was studied under in vitro conditions using Glandularia pulchella (Sweet) Tronc., Pseudomonas monteilii ANK and their consortium.

View Article and Find Full Text PDF

Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB.

View Article and Find Full Text PDF

Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent.

View Article and Find Full Text PDF

Plants of Glandularia pulchella (Sweet) Tronc. performed decolorization of structurally different dyes to varying extent because of induction of different set of enzymes in response to specific dyes. Differential pattern of enzyme induction with respect to time was obtained for lignin peroxidase, veratryl alcohol oxidase, tyrosinase and dichlorophenolindophenol reductase during the decolorization of dye mixture, whose combined action resulted in greater and faster decolorization of dyes.

View Article and Find Full Text PDF

Purpose: Phytoremediation is the exploitation of plants and their rhizospheric microorganisms for pollutants treatment like textile dyes, which are toxic, carcinogenic and mutagenic from the effluent. The purpose of this work was to explore a naturally found plant and bacterial synergism to achieve an enhanced degradation of Remazol Black B dye (RBB).

Methods: In vitro cultures of Zinnia angustifolia were obtained by seed culture method.

View Article and Find Full Text PDF

Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization.

View Article and Find Full Text PDF

Plant consortium-AG of Aster amellus Linn. and Glandularia pulchella (Sweet) Tronc. showed complete decolorization of a dye Remazol Orange 3R in 36 h, while individually A.

View Article and Find Full Text PDF