Rett syndrome (RTT), a severe neurodevelopmental disorder caused by mutations in the MeCP2 gene, is characterized by cognitive and social deficits. Previous studies have noted hypoactivity in the medial prefrontal cortex (mPFC) pyramidal neurons of MeCP2-deficient mice (RTT mice) in response to both social and nonsocial stimuli. To further understand the neural mechanisms behind the social deficits of RTT mice, we monitored excitatory pyramidal neurons in the prelimbic region of the mPFC during social interactions in mice.
View Article and Find Full Text PDFEffective emotional regulation, crucial for adaptive behavior, is mediated by the medial prefrontal cortex (mPFC) via connections to the basolateral amygdala (BLA) and nucleus accumbens (NAc), traditionally considered functionally similar in modulating reward and aversion responses. However, how the mPFC balances these descending pathways to control behavioral outcomes remains unclear. We found that while overall firing patterns appeared consistent across emotional states, deeper analysis revealed distinct variabilities.
View Article and Find Full Text PDFSociability is crucial for survival, whereas social avoidance is a feature of disorders such as Rett syndrome, which is caused by loss-of-function mutations in MECP2. To understand how a preference for social interactions is encoded, we used in vivo calcium imaging to compare medial prefrontal cortex (mPFC) activity in female wild-type and Mecp2-heterozygous mice during three-chamber tests. We found that mPFC pyramidal neurons in Mecp2-deficient mice are hypo-responsive to both social and nonsocial stimuli.
View Article and Find Full Text PDFRett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss of function of the X-linked methyl-CpG–binding protein 2 (). Several case studies report that gross motor function can be improved in children with RTT through treadmill walking, but whether the MeCP2-deficient motor circuit can support actual motor learning remains unclear. We used two-photon calcium imaging to simultaneously observe layer (L) 2/3 and L5a excitatory neuronal activity in the motor cortex (M1) while mice adapted to changing speeds on a computerized running wheel.
View Article and Find Full Text PDFBiological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process.
View Article and Find Full Text PDFNetworks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred.
View Article and Find Full Text PDFA common problem in molecular biology is to use experimental data, such as microarray data, to infer knowledge about the structure of interactions between important molecules in subsystems of the cell. By approximating the state of each molecule as "on" or "off", it becomes possible to simplify the problem, and exploit the tools of boolean analysis for such inference. Amongst boolean techniques, the process-driven approach has shown promise in being able to identify putative network structures, as well as stability and modularity properties.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2010
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response.
View Article and Find Full Text PDFArch Biochem Biophys
November 2009
Peroxisomes contain oxidases that produce H(2)O(2), which can result in protein oxidation. To test the vulnerability of peroxisomal proteins to oxidation in vivo the organelles were isolated from castor bean endosperm incubated with H(2)O(2). When peroxisomes were exposed to H(2)O(2)in vivo, the peroxisomal proteins exhibited an increase in carbonylation as detected in avidin blots of biotin hydrazide derivatized samples.
View Article and Find Full Text PDFHypoxia induces the expression of genes that alter metabolism through the hypoxia-inducible factor (HIF). A theoretical model based on differential equations of the hypoxia response network has been previously proposed in which a sharp response to changes in oxygen concentration was observed but not quantitatively explained. That model consisted of reactions involving 23 molecular species among which the concentrations of HIF and oxygen were linked through a complex set of reactions.
View Article and Find Full Text PDF