Functionalizing single-walled carbon nanotubes (SWCNT) with different chemical functional groups directly enhances their chemical adhesion and dispersion in viscous polymeric resins such as polydimethylsiloxane (PDMS). Nevertheless, the ideal surface polarity (hydrophilic or hydrophobic) for SWCNT to foster stronger chemical bonding with PDMS remains uncertain. This investigation delves into the impact of enhanced SWCNT dispersion within PDMS on the surface mechanical characteristics of this flexible composite system.
View Article and Find Full Text PDFThis study focuses on enhancing the mechanical properties of thin, soft, free-standing films via a layer-by-layer (LBL) fabrication process called LBL-FP. Soft polymer nanocomposite (PNC) thin films, combining polydimethylsiloxane (PDMS) and single-walled carbon nanotubes (SWCNT) at ultra-low loadings using a unique bottom-up LBL-FP, are examined. Two different structures of layered composites, (i) LBL PNCs- Layered composites with alternating layers of PDMS and SWCNT, (ii) Bulk PNCs- Layered composites with SWCNT dispersed in the bulk of PDMS, are comparatively investigated for their structural and mechanical properties.
View Article and Find Full Text PDFPhys Rev Lett
November 2023
We propose a new formula that extracts the quantum Hall conductance from a single (2+1)D gapped wave function. The formula applies to general many-body systems that conserve particle number, and is based on the concept of modular flow, i.e.
View Article and Find Full Text PDFWhen silicon solar cells are used in the novel lightweight photovoltaic (PV) modules using a sandwich design with polycarbonate sheets on both the front and back sides of the cells, they are much more prone to impact loading, which may be prevalent in four-season countries during wintertime. Yet, the lightweight PV modules have recently become an increasingly important development, especially for certain segments of the renewable energy markets all over the world-such as exhibition halls, factories, supermarkets, farms, etc.-including in countries with harsh hailstorms during winter.
View Article and Find Full Text PDFNanolaminates are extensively studied due to their unique properties, such as impact resistance, high fracture toughness, high strength, and resistance to radiation damage. Varieties of nanolaminates are being fabricated to achieve high strength and fracture toughness. In this study, one such nanolaminate fabricated through accumulative roll bonding (Cu(16)/Nb(16) ARB nanolaminate, where 16 nm is the layer thickness) was used as a test material.
View Article and Find Full Text PDFLightweight photovoltaics (PV) modules are important for certain segments of the renewable energy markets-such as exhibition halls, factories, supermarkets, farms, etc. However, lightweight silicon-based PV modules have their own set of technical challenges or concerns. One of them, which is the subject of this paper, is the lack of impact resistance, especially against hailstorms in deep winter in countries with four seasons.
View Article and Find Full Text PDFStrongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to symmetry protected topological phases. Understanding the nature of phase transitions between these different forms of eigenstate order remains an essential open question.
View Article and Find Full Text PDFIn this study, we demonstrate the use of parallel plate far field electrospinning (pp-FFES) based manufacturing system for the fabrication of polyacrylonitrile (PAN) fiber reinforced polyvinyl alcohol (PVA) strong polymer thin films (PVA SPTF). Parallel plate far field electrospinning (also known as the gap electrospinning) is generally used to produce uniaxially aligned fibers between the two parallel collector plates. In the first step, a disc containing PVA/H2O solution/bath (matrix material) was placed in between the two parallel plate collectors.
View Article and Find Full Text PDFThis study used melt-electrospinning writing to fabricate three-dimensional fiber constructs by embedding them in a polyvinyl alcohol (PVA) matrix to obtain thin composite films. Fourier transform infrared spectroscopy (FTIR) and dynamic scanning calorimetry (DSC) were used to demonstrate an interaction between the polycaprolactone (PCL) fibrous phase and the PVA matrix phase. Following this, the mechanical deformation behavior of the composite was investigated, and the effect of reinforcement with three-dimensional fibrous constructs was illustrated.
View Article and Find Full Text PDFElectrospinning is one of the most investigated methods used to produce polymeric fiber scaffolds that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth.
View Article and Find Full Text PDFWe employed a novel picoindenter (PI)/scanning electron microscopy (SEM) technique to measure the pull-off force of an individual electrospun poly(vinylidene fluoride) (PVDF) fibers. Individual fibers were deposited over a channel in a custom-designed silicon substrate, which was then attached to a picoindenter. The picoindenter was then positioned firmly on the sample stage of the SEM.
View Article and Find Full Text PDFTemperature-triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N-isopropylacrylamide) (PNIPAM) by employing a single-step direct electrospinning process. These hybrid CA-PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature.
View Article and Find Full Text PDF