Publications by authors named "Rahul S Khupse"

A 14-step biomimetic synthetic route to glyceollin I (1.5% overall yield) was developed and deployed to produce the natural enantiomeric form in soy, its unnatural stereoisomer, and a racemic mixture. Enantiomeric excess was assessed by asymmetric NMR shift reagents and chiral HPLC.

View Article and Find Full Text PDF

Glyceollins are pterocarpan phytoalexins elicited in high concentrations when soybeans are stressed. We have previously reported that the three glyceollin isomers (GLY I-III) exhibit antiestrogenic properties, which may have significant biological effects upon human exposure. Of the three isomers, we have recently shown that glyceollin I is the most potent antiestrogen.

View Article and Find Full Text PDF

Total syntheses of racemic and (-)-glycinol (1) are described. A Wittig reaction produced the isoflav-3-ene from which a Sharpless dihydroxylation introduced either the racemic or enantiomeric 6a-hydroxy group. A 5.

View Article and Find Full Text PDF

The first total syntheses of racemic glyceollin I and its enantiomers are described. A Wittig approach was utilized as an entry to the appropriately substituted isoflav-3-ene so that an osmium tetroxide mediated asymmetric dihydroxylation could be deployed for stereospecific introduction of the 6a-hydroxy group. While using triphenylphosphine hydrobromide, a novel method was found for gently removing MOM from protected phenolic hydroxyl groups present within sensitive systems.

View Article and Find Full Text PDF

A practical formal synthesis of lespedezol A 1 ( 1) was accomplished in 33% yield for four steps starting from formation of the substituted chalcone. Of particular note is a useful protocol for reduction of the 2-ene bond in the isoflavone intermediate. A significant improvement in the final ring closure when water was scavenged from the reaction is also noteworthy.

View Article and Find Full Text PDF

The total synthesis of xanthohumol (1) was accomplished in 10% overall yield from phloracetophenone after six steps. Insertion of a prenyl group onto the aryl ring was achieved by a para-Claisen rearrangement after using a Mitsunobu reaction to establish the key prenyl ether precursor. A Claisen-Schmidt condensation was deployed to construct the chalcone scaffold followed by removal of MOM protecting groups under acidic conditions that were optimized to prevent concomitant cyclization to the flavone.

View Article and Find Full Text PDF