Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab-scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance.
View Article and Find Full Text PDFThe catalyst surface undergoes reversible structural changes while influencing the rate of redox reactions, the atomistic structural details of which are often overlooked when the key focus is to enhance the catalytic activity and reaction yield. We achieve chemical synthesis of ∼5 unit cell thick double perovskite oxide nanosheets (NSs) and demonstrate their precise structural reversibility while catalyzing the successive oxygen evolution and reduction reactions (OER/ORR). 4.
View Article and Find Full Text PDFSymmetry broken configurations within a long-range atomic arrangement exhibit new physical properties, and distinctive strategies are needed to resuscitate the localized symmetry by introducing measured defects, which can be attractive in displaying enhanced catalytic activities for energy applications. Our hypothesis is validated by introducing lattice defects due to the strain originating from a slightly higher doped grain boundary (GB) than at the interconnected grains of perovskite oxide. When Pd is doped at the B-site of ABO-type LaSrCoO, a marginally higher ionic radius of Pd than Co enables partial deportation of Pd to the GB.
View Article and Find Full Text PDFRoom temperature engineered spatially connected p-type double perovskite oxide (BaPrMn1.75Co0.25O5+δ, BPMC) nanosheets (NSs) with n-type nitrogen-doped multi-walled carbon nanotubes (NCNTs) show significant enhancement in bifunctional oxygen electrocatalytic activity.
View Article and Find Full Text PDFFive-fold intertwined Ag Ni (x=0.01-0.25) heterogeneous alloy nanocrystal (NC) catalysts, prepared through unique reagent combinations, are presented.
View Article and Find Full Text PDFPerovskite oxides have emerged as promising oxygen electrocatalysts for fuel cells and batteries, yet their catalytic activity and long-term stability are under debate because of local surface alterations and instabilities under sustained oxidative potential. Interconnected particles (40 nm) of BaSrCoFeO (BSCF) are decorated by 10-50 wt % NiFe(OH) [NiFe] layered double hydroxide (LDH) sheets via polyethylenimine linkage. This composite renders modulation of surface charges through Coulombic interaction and provides a leeway for electron mobility between the two components, which bestows relief to the BSCF surface from oxidative degradation.
View Article and Find Full Text PDFHerein, we present an innovative approach for transforming commonly available cellulose paper into a flexible and catalytic current collector for overall water splitting. A solution processed soak-and-coat method of electroless plating was used to render a piece of paper conducting by conformably depositing metallic nickel nanoparticles, while still retaining the open macroporous framework. Proof-of-concept paper-electrodes are realized by modifying nickel-paper current collector with model electrocatalysts nickel-iron oxyhydroxide and nickel-molybdenum bimetallic alloy through electrodeposition route.
View Article and Find Full Text PDF