During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT.
View Article and Find Full Text PDFWnt signaling plays a pivotal role in regulating activation, proliferation, stem cell renewal, and differentiation of hair follicle stem cells (HFSCs). Secreted frizzled-related protein 1 (Sfrp1), a Wnt antagonist is upregulated in the HFSCs; however, its role in the HFSCs regulation is still obscure. Here, we show that Sfrp1 loss showed a depletion of HFSCs, enhanced HFSC proliferation, and faster hair follicle cycle at PD21-PD28; HFSC markers, such as Lgr5 and Axin2, were decreased in both the Sfrp1+/- and Sfrp1-/- HFSCs.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1 (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1 CSCs.
View Article and Find Full Text PDFSecretory phospholipase A Group-IIA (sPLA-IIA) is involved in lipid catabolism and growth promoting activity. sPLA-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs).
View Article and Find Full Text PDFSecretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool.
View Article and Find Full Text PDF