Publications by authors named "Rahul Kumar Raya"

Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior.

View Article and Find Full Text PDF

The transport of a photosensitizer to target biological structures followed by the release of singlet oxygen is a critical step in photodynamic therapy. We compared the (photo)physical properties of polystyrene nanoparticles () of different sizes and self-assembled poly(ethylene glycol)--poly(ε-caprolactone) core/shell nanoparticles () with different lengths of copolymer blocks, both suitable for the transport of the tetraphenylporphyrin (TPP) photosensitizer. The singlet oxygen was formed inside both nanoparticles after irradiation with visible light.

View Article and Find Full Text PDF

The formation of keto-enamine based crystalline, porous polymers in water is investigated for the first time. Facile access to the Schiff base reaction in water has been exploited to synthesize stable porous structures using the principles of Dynamic Covalent Chemistry (DCC). Most credibly, the water-based Covalent Organic Frameworks (COFs) possess chemical as well as physical properties such as crystallinity, surface area and porosity, which is comparable to their solvothermal counterparts.

View Article and Find Full Text PDF