Publications by authors named "Rahul Khanolkar"

Uveal melanoma (UM) is the most common intraocular cancer in adults, with metastatic disease (mUM) occurring in approximately half of the patients. Tebentafusp, an immune-mobilizing monoclonal T cell receptor against cancer (ImmTAC), is a therapeutic shown to improve overall survival (OS) in HLA-A*02:01 adult patients with mUM. Here we investigate the impact of tumor-associated macrophages (TAM) on ImmTAC activity.

View Article and Find Full Text PDF
Article Synopsis
  • MAIT cells utilize specific T cell receptors (TCR) to identify microbial riboflavin precursors with the help of the MR1 molecule, but their ability to interact with non-microbial antigens is not fully understood.
  • The study reveals that some MAIT TCRs can react to both tumor and healthy cells without needing microbial signals, indicating a rare presence of self-reactive MAIT cells in healthy donors that may function similarly to T-helper cells.
  • Findings show that MAIT TCRs have significant crossreactivity, implying that their role in the immune response could extend beyond just defending against microbes to also include maintaining immune balance and potentially influencing diseases.
View Article and Find Full Text PDF

Malignant melanoma is an aggressive form of cancer, which can be treated with anti-CTLA-4 and anti-PD-1 checkpoint inhibitor antibodies but while anti-CTLA-4 antibodies have clear benefits for some patients with melanoma, productive responses are difficult to predict and often associated with serious immune related adverse events. Antibodies specific to CTLA-4 bind two major isoforms of CTLA-4 in humans, the receptor isoform and a second naturally secretable, soluble isoform - sCTLA-4. The primary aim here was to examine the effect of selectively blocking the function of sCTLA-4 on immune responses from volunteer healthy or melanoma patient PBMC samples.

View Article and Find Full Text PDF

Background: The inhibitory CTLA-4 molecule is a crucial regulator of immune responses and a target for therapeutic intervention in both autoimmunity and cancer. In particular, CTLA-4 is important in controlling antigen-specific immunity, including responses to autoantigens associated with autoimmune disease. Here, we investigate cytokine responses to a range of lupus-associated autoantigens and assess whether the alternatively spliced isoform of CTLA-4, soluble CTLA-4 (sCTLA-4), contributes to immune regulation of autoantigen-specific immunity in systemic lupus erythematosus (SLE).

View Article and Find Full Text PDF

Inhibitory receptors of the human leukocyte immunoglobulin-like receptor family are constitutively expressed on all myeloid cell types and regulate their functional activity. We demonstrate that ligation of the human leukocyte antigen class I-specific receptor LILRB1, during the differentiation of monocytes to dendritic cells in vitro, results in increased expression of the nuclear factor κB inhibitor protein ABIN1 (also known as TNIP1). Similarly increased expression of ABIN1/TNIP1 was observed in the "immunosuppressive" monocyte populations of patients with non-Hodgkin lymphoma ex vivo.

View Article and Find Full Text PDF

CTLA-4 is an inhibitory protein that contributes to immune homeostasis and tolerance, a role that has led to its exploitation as a therapeutic in several clinical settings including cancer and autoimmune disease. Development of CTLA-4 therapies focused largely on the full-length receptor isoform but other CTLA-4 isoforms are also expressed, including a secretable form of CTLA-4 (soluble CTLA-4 [sCTLA-4]). The contribution of sCTLA-4 to immune regulation has been less well studied, primarily because it was identified some years after the original description of CTLA-4.

View Article and Find Full Text PDF