Promysalin was previously described as a narrow spectrum molecule with a unique species-specific activity against Pseudomonas aeruginosa. Here we demonstrate that promysalin is active against Gram-positive and Gram-negative bacteria using a microdilution assay. Promysalin acts on Gram-positive bacteria with a mechanism of action involving cell membrane damage with leakage of intracellular components.
View Article and Find Full Text PDFGlucokinase activators (GKAs) are among the emerging drug candidates for the treatment of type 2 diabetes (T2D). Despite effective blood glucose lowering in clinical trials, many pan-GKAs "acting both in pancreas and liver" have been discontinued from clinical development mainly because of their potential to cause hypoglycemia. Pan-GKAs over sensitize pancreatic GK, resulting in insulin secretion even at sub-normoglycemic level which might be a possible explanation for hypoglycemia.
View Article and Find Full Text PDFThe first total synthesis of leopolic acid A, a fungal metabolite with a rare 2,3-pyrrolidinedione nucleus linked to an ureido dipeptide, was designed and carried out. Crucial steps for the strategy include a Dieckmann cyclization to obtain the 2,3-pyrrolidinedione ring and a Wittig olefination to install the polymethylene chain. An oxazolidinone-containing leopolic acid A analogue was also synthesized.
View Article and Find Full Text PDFAmong the novel approaches applied to antimicrobial drug development, natural product-inspired synthesis plays a major role, by providing biologically validated starting points. Tetramic acids, a class of natural products containing a 2,4-pyrrolidinedione ring system, have attracted considerable attention for their antibacterial, antiviral, antifungal and anticancer activities. On the contrary, compounds with a 2,3-pyrrolidinedione skeleton have been considerably less investigated.
View Article and Find Full Text PDF