Optically pure alcohols are abundant in nature and attractive as feedstock for organic synthesis but challenging for further transformation using atom efficient and sustainable methodologies, particularly when there is a desire to conserve the chirality. Usually, substitution of the OH group of stereogenic alcohols with conservation of chirality requires derivatization as part of a complex, stoichiometric procedure. We herein demonstrate that a simple, inexpensive, and environmentally benign iron(III) catalyst promotes the direct intramolecular substitution of enantiomerically enriched secondary and tertiary alcohols with O-, N-, and S-centered nucleophiles to generate valuable 5-membered, 6-membered and aryl-fused 6-membered heterocyclic compounds with chirality transfer and water as the only byproduct.
View Article and Find Full Text PDFChiral α-sulfenylated ketones are versatile building blocks, although there are still several limitations with their preparation. Here we report a new two-step procedure, consisting of Pd-catalyzed hydrothiolation of propargylic alcohols followed by an enantioselective Rh isomerization of allylic alcohols. The isomerization reaction is the key step for obtaining the ketones in their enantioenriched form.
View Article and Find Full Text PDFAn atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the β-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.
View Article and Find Full Text PDFAn efficient and highly atom-economical tandem Pd/Au-catalyzed route to α-sulfenylated carbonyl compounds from terminal propargylic alcohols and thiols has been developed. This one-step procedure has a wide substrate scope with respect to substituents at the α-position of the alcohol. Both aromatic and aliphatic thiols generated the α-sulfenylated carbonyl products in good to excellent yields.
View Article and Find Full Text PDFGold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α-sulfenylated aldehydes and ketones in 60-97% yield. Secondary aliphatic propargylic alcohols generated α-sulfenylated ketones in yields of 47-71%.
View Article and Find Full Text PDF