Sickle cell anemia is accompanied by the activation of coagulation and thrombosis. We have studied the abnormal expression of tissue factor (TF) by the pulmonary vein endothelium of the mild-phenotype NY1DD sickle transgenic. As detected by immunofluorescence microscopy, this occurs only after the NY1DD mouse is exposed to hypoxia/reoxygenation (H/R), which actually causes ischemia/reperfusion in the sickle cell disease-but not the normal-mouse model.
View Article and Find Full Text PDFThe vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation.
View Article and Find Full Text PDFActivation of the coagulation system is a characteristic feature of sickle cell anemia, which also includes clinical thrombosis. The sickle transgenic mouse abnormally expresses tissue factor (TF) on the pulmonary vein endothelium. Knowing that this aberrancy is stimulated by inflammation, we sought to determine whether nitric oxide (NO) contributes to regulation of endothelial TF expression in the sickle mouse model.
View Article and Find Full Text PDFObjective: Clinically, the vascular pathobiology of human sickle cell disease includes an abnormal state of chronic inflammation and activation of the coagulation system. Since these biologies likely underlie development of vascular disease in sickle subjects, they offer attractive targets for novel therapeutics. Similar findings characterize the sickle transgenic mouse, which therefore provides a clinically relevant inflammation model.
View Article and Find Full Text PDFAbnormal tissue factor (TF) expression has been demonstrated on blood monocytes and circulating endothelial cells in humans with sickle cell anemia. We have now studied sickle transgenic mice to help define the biology of endothelial TF expression in sickle disease. Using immunostaining of tissue sections, we find that this is confined almost exclusively to the pulmonary veins.
View Article and Find Full Text PDFCancer Chemother Pharmacol
April 2002
Purpose: In preclinical models, established molecular determinants of cellular sensitivity to cyclophosphamide, long a mainstay of chemotherapeutic regimens used to treat breast cancers, include the aldehyde dehydrogenases that catalyze the detoxification of this agent, namely, ALDH1A1 and ALDH3A1. As judged by bulk quantification of relevant catalytic activities, as well as of relevant proteins (ELISAs), tissue levels of these enzymes vary widely in primary and metastatic breast malignancies. Thus, interindividual variation in the activity of either of these enzymes in breast cancers could contribute to the wide variation in clinical responses obtained when such regimens are used to treat these malignancies.
View Article and Find Full Text PDF