Advances in and the rapid growth of the nanotechnology sector have escalated manufacture of nanoparticles (NPs), resulting in a significant increase in the probability of exposure of humans and wildlife to these materials. Many NPs have been found to exert genotoxicity. Therefore, genotoxicity studies are mandatory to assess the toxicity of NPs as a concern of succumbing to genetic diseases and cancers are universal.
View Article and Find Full Text PDFThe genotoxicological effects in 200 lead acid storage battery recycling and manufacturing industry workers in Hyderabad along with matched 200 controls were studied. The genetic damage was determined by comet, micronucleus (MN), and chromosomal aberration (CA) test in peripheral blood lymphocytes (PBL). The MN test was also carried out in buccal epithelial cells (BECs).
View Article and Find Full Text PDFThe present study consisted of cytotoxic, genotoxic, and oxidative stress responses of human neuroblastoma cell line (IMR32) following exposure to different doses of cerium oxide nanoparticles (CeO2 NPs; nanoceria) and its microparticles (MPs) for 24 hours. Cytotoxicity was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays whereas genotoxicity was assessed using the cytokinesis-block micronucleus and comet assays. A battery of assays including lipid peroxidation, reactive oxygen species (ROS), hydrogen peroxide, reduced glutathione, nitric oxide, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, and glutathione S-transferase were performed to test the hypothesis that ROS was responsible for the toxicity of nanoceria.
View Article and Find Full Text PDFObjectives: Biomonitoring of exposure in workplaces has gained importance in evaluation of human health hazards. Since occupational exposure to petroleum hydrocarbons may have deleterious effects, genotoxicity risk among 200 fuel filling station attendants (FFSAs) and 200 matched controls was investigated.
Methods: The probable genetic damage was determined by comet assay and micronucleus test in peripheral blood lymphocytes (PBL) of study subjects.