Publications by authors named "Rahmad Sadli"

This paper presents a novel vehicular environment identification approach based on deep learning. It consists of exploiting the vehicular wireless channel characteristics in the form of Channel State Information (CSI) in the receiver side of a connected vehicle in order to identify the environment type in which the vehicle is driving, without any need to implement specific sensors such as cameras or radars. We consider environment identification as a classification problem, and propose a new convolutional neural network (CNN) architecture to deal with it.

View Article and Find Full Text PDF

For self-driving systems or autonomous vehicles (AVs), accurate lane-level localization is a important for performing complex driving maneuvers. Classical GNSS-based methods are usually not accurate enough to have lane-level localization to support the AV's maneuvers. LiDAR-based localization can provide accurate localization.

View Article and Find Full Text PDF

In this paper, we evaluate the effect of scale analysis as well as the filtering process on the performances of an original compressed-domain classifier in the field of material surface topographies classification. Each surface profile is multiscale analyzed by using a Gaussian Filter analyzing method to be decomposed into three multiscale filtered image types: Low-pass (LP), Band-pass (BP), and High-pass (HP) filtered versions, respectively. The complete set of filtered image data constitutes the collected database.

View Article and Find Full Text PDF