Publications by authors named "Rahimova R"

Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules.

View Article and Find Full Text PDF

Antibodies to thyroid peroxidase (AB-TPO), antibodies to thyroglobulin (AB-TG), and the content of α2-macroglobulin (α2-MG) have been studied in serum samples of patients with autoimmune thyroiditis (AIT). All the patients were divided into 3 groups depending on age: 25-35, 36-50, 51-65 years. We found a significant change in the thyroid panel parameters in AIT, but without significant changes in the average concentration of α2-MG in the age groups of patients.

View Article and Find Full Text PDF

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 M. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4.

View Article and Find Full Text PDF

Multidrug resistance is a major public health problem that requires the urgent development of new antibiotics and therefore the identification of novel bacterial targets. The activity of nicotinamide adenine dinucleotide kinase, NADK, is essential in all bacteria tested so far, including many human pathogens that display antibiotic resistance leading to the failure of current treatments. Inhibiting NADK is therefore a promising and innovative antibacterial strategy since there is currently no drug on the market targeting this enzyme.

View Article and Find Full Text PDF

Autoimmune thyroiditis is a group of organ-specific autoimmune thyropathies, which are caused by a genetically determined defect in immune tolerance to thyroid antigens, as a result of which its autoimmune damage occurs. The aim of the study was to analyze literature data on the pathogenetic role of genetic and biochemical parameters in patients with autoimmune thyroiditis.

View Article and Find Full Text PDF

Derivatives of 5'-aminoadenosine containing methyl carboxylate, methyl phosphonate, gem-bisphosphonate, bis(methylphosphonate), and α-carboxylmethylphosphonate or phosphonoacetate moieties were synthesized from key intermediate 5'-aminonucleoside. These nucleotide analogues were envisaged as 5'-mono- or diphosphate nucleoside mimics. All compounds were evaluated for CD73 inhibition in a cell-based assay (MDA-MB-231) and toward the purified recombinant protein.

View Article and Find Full Text PDF

The development of cytosolic 5'-nucleotidase II (cN-II) inhibitors is essential to validate cN-II as a potential target for the reversion of resistance to cytotoxic nucleoside analogues. We previously reported a fragment-based approach combined with molecular modelling, herein, the selected hit-fragments were used again in another computational approach based on the Ilib-diverse (a software enabling to build virtual molecule libraries through fragment based de novo design) program to generate a focused library of potential inhibitors. A molecular scaffold related to a previously identified compound was selected and led to a novel series of compounds.

View Article and Find Full Text PDF

The ecto-5'-nucleotidase CD73 plays an important role in the production of immune-suppressive adenosine in tumor micro-environment, and has become a validated drug target in oncology. Indeed, the anticancer immune response involves extracellular ATP to block cell proliferation through T-cell activation. However, in the tumor micro-environment, two extracellular membrane-bound enzymes (CD39 and CD73) are overexpressed and hydrolyze efficiently ATP into AMP then further into immune-suppressive adenosine.

View Article and Find Full Text PDF

We used a combined approach based on fragment-based drug design (FBDD) and in silico methods to design potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), which has been recognized as an important therapeutic target in hematological cancers. Two subgroups of small compounds (including adenine and biaryl moieties) were identified as cN-II binders and a fragment growing strategy guided by molecular docking was considered. Five compounds induced a strong inhibition of the 5'-nucleotidase activity in vitro, and the most potent ones were characterized as noncompetitive inhibitors.

View Article and Find Full Text PDF

In planta production of recombinant proteins, including vaccine antigens and monoclonal antibodies, continues gaining acceptance. With the broadening range of target proteins, the need for vectors with higher performance is increasing. Here, we have developed a single-replicon vector based on beet yellows virus (BYV) that enables co-delivery of two target genes into the same host cell, resulting in transient expression of each target.

View Article and Find Full Text PDF