Publications by authors named "Rahimi-Majd M"

Mesophyll conductance ( ) describes the efficiency with which moves from substomatal cavities to chloroplasts. Despite the stipulated importance of leaf architecture in affecting , there remains a considerable ambiguity about how and whether leaf anatomy influences . Here, we employed nonlinear machine-learning models to assess the relationship between 10 leaf architecture traits and .

View Article and Find Full Text PDF

Networks of excitable systems provide a flexible and tractable model for various phenomena in biology, social sciences, and physics. A large class of such models undergo a continuous phase transition as the excitability of the nodes is increased. However, models of excitability that result in this continuous phase transition are based implicitly on the assumption that the probability that a node gets excited, its transfer function, is linear for small inputs.

View Article and Find Full Text PDF

This paper is devoted to a phenomenological study of the earthquakes in central Alborz, Iran. Using three observational quantities, namely the weight function, the quality factor, and the velocity model in this region, we develop a modified dissipative sandpile model which captures the main features of the system, especially the average activity field over the region of study. The model is based on external stimuli, the location of which is chosen (I) randomly, (II) on the faults, (III) on the low active points, (IV) on the moderately active points, and (V) on the highly active points in the region.

View Article and Find Full Text PDF

Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present in the olfactory bulb system of mammalians and in the human visual system, as well as in arthropods and nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor the activity tuned by the following parameters: the decay length of the graded potential in local neurons, the fraction of local neurons, the largest eigenvalue of the adjacency matrix, and the range of connections of the local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition lines: a critical line separating subcritical and supercritical regions, characterized by power-law distributions of avalanche sizes and durations, and a bifurcation line.

View Article and Find Full Text PDF