Uncertainty quantification is crucial in deep learning, especially in medical diagnostics, to measure model prediction confidence and ensure reliable clinical decisions. This study introduces a novel conflict-based uncertainty quantification approach, applied as a case study in lung cancer classification, leveraging Dempster-Shafer Theory in conjunction with Deep Ensemble methods. The proposed method aggregates predictions from multiple neural network models using conflict as an uncertainty measure.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2024
In radiology, particularly in lung cancer diagnosis, diagnostic errors and cognitive biases pose substantial challenges. These issues, including perceptual errors, interpretive mistakes, and cognitive biases such as anchoring and premature closure, are often unnoticed by experienced radiologists. To address these challenges, we propose the Multi-Eyes principle approach, which utilises multiple deep learning models to reduce bias and potentially improve diagnostic accuracy.
View Article and Find Full Text PDFEarly detection is crucial for lung cancer to prolong the patient's survival. Existing model architectures used in such systems have shown promising results. However, they lack reliability and robustness in their predictions and the models are typically evaluated on a single dataset, making them overconfident when a new class is present.
View Article and Find Full Text PDF