In order to characterize the hygroscopic properties of cellulose-based materials, which can absorb large amounts of water from vapor in ambient air, or the adsorption capacity of pollutants or molecules in various porous materials, it is common to rely on sorption-desorption dynamic tests. This consists of observing the mass variation over time when the sample is placed in contact with a fluid containing the elements to be absorbed or adsorbed. Here, we focus on the case of a hygroscopic material in contact with air at a relative humidity (RH) differing from that at which it has been prepared.
View Article and Find Full Text PDFPorous media containing voids which can be filled with gas and/or liquids are ubiquitous in our everyday life: soils, wood, bricks, concrete, sponges, and textiles. It is of major interest to identify how a liquid, pushing another fluid or transporting particles, ions, or nutriments, can penetrate or be extracted from the porous medium. High-resolution X-ray microtomography, neutron imaging, and magnetic resonance imaging are techniques allowing us to obtain, in a nondestructive way, a view of the internal processes in nontransparent porous media.
View Article and Find Full Text PDFVascular plants, a vast group including conifers, flowering plants, etc., are made of a cellular hygroscopic structure containing water in the form of either free (i.e.
View Article and Find Full Text PDFToday, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants.
View Article and Find Full Text PDFSpinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI.
View Article and Find Full Text PDFThe climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water.
View Article and Find Full Text PDFHere we demonstrate for the first time that Mn-doped Prussian blue nanoparticles of c.a. 70 nm act as effective agents for photothermal therapy under two-photon excitation with an almost total eradication of malignant cells (97 and 98%) at a concentration of 100 μg mL 24 h after NIR excitation.
View Article and Find Full Text PDFCentral nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI).
View Article and Find Full Text PDF