Publications by authors named "Rahfeld J"

Background: Numerous studies suggest a progressive accumulation of post-translationally modified peptides within amyloid fibrils, including isoaspartate (isoD) modifications. Here, we generated and characterised novel monoclonal antibodies targeting isoD-modified transthyretin (TTR). The antibodies were used to investigate the presence of isoD-modified TTR in deposits from transthyretin amyloidosis patients and to mediate antibody-dependent phagocytosis of TTR fibrils.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 (DP4)/CD26 regulates the biological function of various peptide hormones by releasing dipeptides from their N-terminus. The enzyme is a prominent target for the treatment of type-2 diabetes and various DP4 inhibitors have been developed in recent years, but their efficacy and side effects are still an issue. Many available crystal structures of the enzyme give a static picture about enzyme-ligand interactions, but the influence of amino acids in the active centre on binding and single catalysis steps can only be judged by mutagenesis studies.

View Article and Find Full Text PDF

The hepatic content of amyloid beta (Aβ) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aβ deficiency in the liver. This is especially relevant in view of recent advances in anti-Aβ therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aβ in transgenic AD mice immunized with Aβ antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I.

View Article and Find Full Text PDF

Passive immunotherapy is a very promising approach for the treatment of Alzheimer's disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and reduced treatment-related side effects. In that regard, we recently demonstrated that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to the attenuation of AD-like amyloid pathology in 5xFAD mice.

View Article and Find Full Text PDF
Article Synopsis
  • Periodontitis is a serious oral disease linked to systemic conditions like diabetes and Alzheimer's, leading to increased interest in its treatment.
  • A key contributor to periodontitis is the imbalance in the oral microbiome, with specific pathogens being targeted for new drug developments.
  • Researchers have discovered a new class of inhibitors for glutaminyl cyclases, showing promise due to their potent activity and low toxicity, which could aid in combating periodontitis.
View Article and Find Full Text PDF
Article Synopsis
  • Pyroglutamate-modified Aβ (pGlu3-Aβ) peptides are linked to the onset and progression of Alzheimer's disease, leading to research on therapies targeting these peptides.
  • Current clinical approaches include the use of Varoglutamstat (a glutaminyl cyclase inhibitor) and Donanemab (a monoclonal antibody) to combat pGlu3-Aβ peptides.
  • In studies with transgenic mice, combining Varoglutamstat with a specific antibody showed significant reductions in Aβ levels, suggesting that the combo treatment could enhance effectiveness while allowing for lower doses of each drug.
View Article and Find Full Text PDF

Immunotherapies, such as chimeric antigen receptor (CAR) modified T cells and antibody-drug conjugates (ADCs), have revolutionized the treatment of cancer, especially of lymphoid malignancies. The application of targeted immunotherapy to patients with acute myeloid leukemia (AML) has been limited in particular by the lack of a tumor-specific target antigen. Gemtuzumab ozogamicin (GO), an ADC targeting CD33, is the only approved immunotherapeutic agent in AML.

View Article and Find Full Text PDF

The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer's disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals.

View Article and Find Full Text PDF

The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer Disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens , and represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals.

View Article and Find Full Text PDF

Amyloid-β (Aβ) deposits are a relatively late consequence of Aβ aggregation in Alzheimer's disease. When pathogenic Aβ seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aβ seeds before Aβ deposition becomes detectable in Aβ precursor protein-transgenic mice.

View Article and Find Full Text PDF

Background: Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer's disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy.

View Article and Find Full Text PDF

In clinical trials with early Alzheimer's patients, administration of anti-amyloid antibodies reduced amyloid deposits, suggesting that immunotherapies may be promising disease-modifying interventions against Alzheimer's disease (AD). Specific forms of amyloid beta (Aβ) peptides, for example post-translationally modified Aβ peptides with a pyroglutamate at the N-terminus (pGlu3, pE3), are attractive antibody targets, due to pGlu3-Aβ's neo-epitope character and its propensity to form neurotoxic oligomeric aggregates. We have generated a novel anti-pGlu3-Aβ antibody, PBD-C06, which is based on a murine precursor antibody that binds with high specificity to pGlu3-Aβ monomers, oligomers and fibrils, including mixed aggregates of unmodified Aβ and pGlu3-Aβ peptides.

View Article and Find Full Text PDF

Background: Pyroglutamate-3 Aβ (pGlu-3 Aβ) is an N-terminally truncated and post-translationally modified Aβ species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aβ antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology.

View Article and Find Full Text PDF

Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs).

View Article and Find Full Text PDF
Article Synopsis
  • Oligomeric assemblies of neurotoxic amyloid beta peptides, particularly the modified pE-Abeta variant, are crucial in the development of Alzheimer’s disease and are generated from the amyloid precursor protein (APP).
  • Recent findings show that the enzyme glutaminyl cyclase (QC) may play a significant role in producing the harmful pE-Abeta variant, but direct evidence from transgenic animal studies was previously lacking.
  • This study demonstrates that pE-Abeta deposition occurs in specific brain regions of APP-transgenic mice where both APP and QC are present, highlighting the importance of these proteins in the formation of neurotoxic aggregates in Alzheimer’s pathology.
View Article and Find Full Text PDF

Alzheimer disease is associated with deposition of the amyloidogenic peptide Aβ in the brain. Passive immunization using Aβ-specific antibodies has been demonstrated to reduce amyloid deposition both and Because N-terminally truncated pyroglutamate (pE)-modified Aβ species (Aβ) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize Aβ with affinities of 1-10 nm and inhibit Aβ fibril formation application of one of these resulted in improved memory in Aβ oligomer-treated mice.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited and fatal polyglutamine neurodegenerative disorder caused by an expansion of the CAG triplet repeat coding region within the HD gene. Progressive dysfunction and loss of striatal GABAergic medium spiny neurons (MSNs) may account for some of the characteristic symptoms in HD patients. Interestingly, in HD, MSNs expressing neuropeptide Y (NPY) are spared and their numbers is even up-regulated in HD patients.

View Article and Find Full Text PDF

N-terminal truncation and pyroglutamyl (pE) formation are naturally occurring chemical modifications of the Aβ peptide in Alzheimer's disease. We show herein that these two modifications significantly reduce the fibril length and the transition midpoint of thermal unfolding of the fibrils, but they do not substantially perturb the fibrillary peptide conformation. This observation implies that the N terminus of the unmodified peptide protects Aβ fibrils against mechanical stress and fragmentation and explains the high propensity of pE-modified peptides to form small and particularly toxic aggregates.

View Article and Find Full Text PDF

Pyroglutamate-3 amyloid-beta (pGlu-3 Aβ) is an N-terminally truncated Aβ isoform likely playing a decisive role in Alzheimer's disease pathogenesis. Here, we describe a prophylactic passive immunization study in APPswe/PS1ΔE9 mice using a novel pGlu-3 Aβ immunoglobulin G1 (IgG1) monoclonal antibody, 07/1 (150 and 500 μg, intraperitoneal, weekly) and compare its efficacy with a general Aβ IgG1 monoclonal antibody, 3A1 (200 μg, intraperitoneal, weekly) as a positive control. After 28 weeks of treatment, plaque burden was reduced and cognitive performance of 07/1-immunized Tg mice, especially at the higher dose, was normalized to wild-type levels in 2 hippocampal-dependent tests and partially spared compared with phosphate-buffered saline-treated Tg mice.

View Article and Find Full Text PDF

The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study.

View Article and Find Full Text PDF

Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX).

View Article and Find Full Text PDF

Interleukin-6 is one of the most prominent triggers of inflammatory processes. We have shown recently that heteroarylketones (HAKs) interfere with stimulated interleukin-6 expression in astrocytes by suppression of STAT3 phosphorylation at serine 727. Surprisingly, this effect is not based on the inhibition of STAT3-relevant kinases.

View Article and Find Full Text PDF

The structure of ligand-free glutaminyl cyclase (QC) from Drosophila melanogaster (DmQC) has been determined in a novel crystal form. The protein crystallized in space group I4, with unit-cell parameters a = b = 122.3, c = 72.

View Article and Find Full Text PDF

Glutaminyl cyclases (QCs), which catalyze the formation of pyroglutamic acid (pGlu) at the N-terminus of a variety of peptides and proteins, have attracted particular attention for their potential role in Alzheimer's disease. In a transgenic Drosophila melanogaster (Dm) fruit fly model, oral application of the potent competitive QC inhibitor PBD150 was shown to reduce the burden of pGlu-modified Aβ. In contrast to mammals such as humans and rodents, there are at least three DmQC species, one of which (isoDromeQC) is localized to mitochondria, whereas DromeQC and an isoDromeQC splice variant possess signal peptides for secretion.

View Article and Find Full Text PDF