Triple-negative breast cancer is a subtype of breast cancer with poor clinical outcome, and currently, no effective targeted therapies are available. Since cancer develops owing to deregulation of apoptosis, employing therapeutic strategies with the ability to target the molecules involved in apoptosis induction would provide a valid approach to hinder tumor progression. Hydrazide-hydrazones and oxamide molecules are the subject of intense studies due to their anticancer effects via apoptosis induction.
View Article and Find Full Text PDFBackground And Purpose: Considering various studies implying anticancer activity of the hydrazone and oxamide derivatives through different mechanisms such as kinases and calpain inhibition, herein, we report the synthesis, characterization, and evaluation of the antiproliferative effect of a series of hydrazones bearing oxamide moiety compounds () against a panel of cancer cell lines to explore a novel and promising anticancer agent ().
Experimental Approach: Chemical structures of the synthesized compounds were confirmed by FTIR, H-NMR, C-NMR, and mass spectra. The antiproliferative activity and cell cycle progression of the target compound were investigated using the MTT assay and flow cytometry.
Background: Compounds possessing urea/thiourea moiety have a wide range of biological properties including anticancer activity. On the other hand, taking advantage of the low toxicity and structural diversity of hydrazone derivatives, they are presently being considered for designing chemical compounds with hydrazone moiety in the field of cancer treatment. With this in mind, a series of novel ureido/thioureido derivatives possessing a hydrazone moiety bearing nitro and chloro substituents (4a-4i) have been designed, synthesized, characterized and evaluated for their in vitro cytotoxic effect on HT-29 human colon carcinoma and HepG2 hepatocarcinoma cell lines.
View Article and Find Full Text PDFPrognosis of metastatic breast cancer is very poor which urges the necessity to develop novel potential drug candidates. We assessed two compounds with tri-aryl structures ( and ) for their potency to reduce primary breast tumor growth and lung metastasis in 4T1 mice model. MTT assay, 4T1 mammary mouse model, and immunohistochemistry experiments were used in this study.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
November 2020
Background: Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity.
Methods: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay.
Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k).
View Article and Find Full Text PDFBackground: There are currently a number of barriers hindering the successful treatment of breast cancer, including the metastatic spread of cancer cells. In looking for new anticancer agents, we reported two novel hydrazide derivatives with anti-cancer activity in human breast cancer cells. The current study aims to explore the therapeutic potential of the most effective one, N'-((5-nitrothiophen-2-yl)methylene)-2-(phenylthio)benzohydrazide (compound B), on metastatic breast cancer, which is resistant to available chemotherapeutics.
View Article and Find Full Text PDFBackground: Allium species are magnificently nutritious and are commonly used as a part of the diet in Iran. They have health enhancing benefits including anticancer properties due to the presence of numerous bioactive compounds. Herein, we investigated in vitro and in vivo anticancer properties of Allium bakhtiaricum extracts.
View Article and Find Full Text PDF