Publications by authors named "Raheleh Kafieh"

Purpose: Several machine learning studies have used optical coherence tomography (OCT) for multiple sclerosis (MS) classification with promising outcomes. Infrared reflectance scanning laser ophthalmoscopy (IR-SLO) captures high-resolution fundus images, commonly combined with OCT for fixed B-scan positions. However, no machine learning research has utilized IR-SLO images for automated MS diagnosis.

View Article and Find Full Text PDF

Objective: Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS.

View Article and Find Full Text PDF

Background: Within the domain of multiple sclerosis (MS), the precise discrimination between active and inactive lesions bears immense significance. Active lesions are enhanced on T1-weighted MRI images after administration of gadolinium-based contrast agents, which brings about associated complexities. This study investigates the potential of deep learning to differentiate between active and inactive lesions in MS using non-contrast FLAIR-type MRI data, presenting a non-invasive alternative to conventional gadolinium-based MRI methods.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent type of pancreas cancer with a high mortality rate and its staging is highly dependent on the extent of involvement between the tumor and surrounding vessels, facilitating treatment response assessment in PDAC.

Objective: This study aims at detecting and visualizing the tumor region and the surrounding vessels in PDAC CT scan since, despite the tumors in other abdominal organs, clear detection of PDAC is highly difficult.

Material And Methods: This retrospective study consists of three stages: 1) a patch-based algorithm for differentiation between tumor region and healthy tissue using multi-scale texture analysis along with L1-SVM (Support Vector Machine) classifier, 2) a voting-based approach, developed on a standard logistic function, to mitigate false detections, and 3) 3D visualization of the tumor and the surrounding vessels using ITK-SNAP software.

View Article and Find Full Text PDF

Fully automated and volumetric segmentation of critical tumors may play a crucial role in diagnosis and surgical planning. One of the most challenging tumor segmentation tasks is localization of pancreatic ductal adenocarcinoma (PDAC). Exclusive application of conventional methods does not appear promising.

View Article and Find Full Text PDF

Background: Asymmetry analysis of retinal layers in right and left eyes can be a valuable tool for early diagnoses of retinal diseases. To determine the limits of the normal interocular asymmetry in retinal layers around macula, thickness measurements are obtained with optical coherence tomography (OCT).

Methods: For this purpose, after segmentation of intraretinal layer in threedimensional OCT data and calculating the midmacular point, the TM of each layer is obtained in 9 sectors in concentric circles around the macula.

View Article and Find Full Text PDF

Background: The aim of this study was to identify and compare the characteristics of retinal nerve layers using spectral domain-optical coherence tomography (SD-OCT) in neuromyelitis optica spectrum disorder (NMOSD), relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HCs).

Methods: It is a cross-sectional population-based study in Isfahan, Iran. We enrolled 98 participants including 45 NMOSD patients (90 eyes), 35 RRMS patients (70 eyes) and 18 HCs (36 eyes).

View Article and Find Full Text PDF

Background: Image fusion is the process of combining the information of several input images into one image. Projection images obtained from three-dimensional (3D) optical coherence tomography (OCT) can show inlier retinal pathology and abnormalities that are not visible in conventional fundus images. In recent years, the projection image is often made by an average on all retina that causes to lose many intraretinal details.

View Article and Find Full Text PDF

The recent application of Fourier Based Iterative Reconstruction Method (FIRM) has made it possible to achieve high-quality 2D images from a fan beam Computed Tomography (CT) scan with a limited number of projections in a fast manner. The proposed methodology in this article is designed to provide 3D Radon space in linogram fashion to facilitate the use of FIRM with cone beam projections (CBP) for the reconstruction of 3D images in a sparse view angles Cone Beam CT (CBCT). For this reason, in the first phase, the 3D Radon space is generated using CBP data after discretization and optimization of the famous Grangeat's formula.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) are extensively used in cardiac image analysis. However, heart localization has become a prerequisite to these networks since it decreases the size of input images. Accordingly, recent CNNs benefit from deeper architectures in gaining abstract semantic information.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) is one of the well-known imaging systems in ophthalmology that provides images with high resolution from retinal tissue. However, like other coherent imaging systems, OCT images suffer from speckle noise which decreases the image quality. Denoising can be considered as an estimation problem in a Bayesian framework.

View Article and Find Full Text PDF

Right ventricle segmentation is a challenging task in cardiac image analysis due to its complex anatomy and huge shape variations. In this paper, we proposed a semi-automatic approach by incorporating the right ventricle region and shape information into livewire framework and using one slice segmentation result for the segmentation of adjacent slices. The region term is created using our previously proposed region growing algorithm combined with the SUSAN edge detector while the shape prior is obtained by forming a signed distance function (SDF) from a set of binary masks of the right ventricle and applying PCA on them.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) is known as a non-invasive and high resolution imaging modality in ophthalmology. Effecting noise on the OCT images as well as other reasons cause a random behavior in these images. In this study, we introduce a new statistical model for retinal layers in healthy OCT images.

View Article and Find Full Text PDF

Nowadays, it is obvious that there is a relationship between changes in the retinal vessel structure and diseases such as diabetic, hypertension, stroke, and the other cardiovascular diseases in adults as well as retinopathy of prematurity in infants. Retinal fundus images provide non-invasive visualization of the retinal vessel structure. Applying image processing techniques in the study of digital color fundus photographs and analyzing their vasculature is a reliable approach for early diagnosis of the aforementioned diseases.

View Article and Find Full Text PDF

This study was conducted to determine the thickness map of eleven retinal layers in normal subjects by spectral domain optical coherence tomography (SD-OCT) and evaluate their association with sex and age. Mean regional retinal thickness of 11 retinal layers was obtained by automatic three-dimensional diffusion map based method in 112 normal eyes of 76 Iranian subjects. We applied our previously reported 3D intraretinal fast layer segmentation which does not require edge-based image information but rather relies on regional image texture.

View Article and Find Full Text PDF

In this paper, we discuss about applications of different methods for decomposing a signal over elementary waveforms chosen in a family called a dictionary (atomic representations) in optical coherence tomography (OCT). If the representation is learned from the data, a nonparametric dictionary is defined with three fundamental properties of being data-driven, applicability on 3D, and working in multi-scale, which make it appropriate for processing of OCT images. We discuss about application of such representations including complex wavelet based K-SVD, and diffusion wavelets on OCT data.

View Article and Find Full Text PDF

Diagnosis of corneal diseases is possible by measuring and evaluation of corneal thickness in different layers. Thus, the need for precise segmentation of corneal layer boundaries is inevitable. Obviously, manual segmentation is time-consuming and imprecise.

View Article and Find Full Text PDF

The introduction of enhanced depth imaging optical coherence tomography (EDI-OCT) has provided the advantage of in vivo cross-sectional imaging of the choroid, similar to the retina, with standard commercially available spectral domain (SD) OCT machines. A texture-based algorithm is introduced in this paper for fully automatic segmentation of choroidal images obtained from an EDI system of Heidelberg 3D OCT Spectralis. Dynamic programming is utilized to determine the location of the retinal pigment epithelium (RPE).

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance.

View Article and Find Full Text PDF

This paper proposes a multimodal approach for vessel segmentation of macular optical coherence tomography (OCT) slices along with the fundus image. The method is comprised of two separate stages; the first step is 2-D segmentation of blood vessels in curvelet domain, enhanced by taking advantage of vessel information in crossing OCT slices (named feedback procedure), and improved by suppressing the false positives around the optic nerve head. The proposed method for vessel localization of OCT slices is also enhanced utilizing the fact that retinal nerve fiber layer becomes thicker in the presence of the blood vessels.

View Article and Find Full Text PDF

In this paper, we try to find a particular combination of wavelet shrinkage and nonlinear diffusion for noise removal in dental images. We selected the wavelet diffusion and modified its automatic threshold selection by proposing new models for speckle-related modulus. The Laplacian mixture model, Rayleigh mixture model, and circular symmetric Laplacian mixture models were evaluated and, as it could be expected, the latter provided a better model because of its compatibility with heavy tailed structure of the wavelet coefficients besides their interscale dependence.

View Article and Find Full Text PDF

In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.

View Article and Find Full Text PDF