Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and β-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and β-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)).
View Article and Find Full Text PDFAbiotic stresses limit the quantity and quality of rice grain production, which is considered a strategic crop in many countries. In this study, a meta-analysis of different microarray data at seedling stage was performed to investigate the effects of multiple abiotic stresses (drought, salinity, cold situation, high temperature, alkali condition, iron, aluminum, and heavy metal toxicity, nitrogen, phosphorus, and potassium deficiency) on rice. Comparative analysis between multiple abiotic stress groups and their control groups indicated 561 differentially expressed genes (DEGs), among which 422 and 139 genes were up-regulated and down-regulated, respectively.
View Article and Find Full Text PDFBackground: Salinity is one of the major abiotic stresses that limit the production and yields of agricultural crops worldwide.
Objectives: In order to identify key barley genes under salinity stress, the available metadata were examined by two methods of Cytoscape and R software. Next, the hub expression of the selected gene was evaluated under different salinity stress treatments and finally, this gene was cloned into cloning and expression vector and recombinant plasmid was made.
Aegilops tauschii, as a donor of D genome to the bread wheat with a valuable source of resistance to different biotic and abiotic stresses, is used to improve the quality of wheat cultivars. Every genotype has a specific genetic content, the investigation of which can lead to the identification of useful genes such as stress tolerance genes, including drought. Therefore, 23 genotypes of Ae.
View Article and Find Full Text PDFBackground: Nitrogen is very important for crop yield and quality. Crop producers face the challenge of reducing the use of mineral nitrogen while maintaining food security and other ecosystem services. The first step towards understanding the metabolic responses that could be used to improve nitrogen use efficiency is to identify the genes that are up- or downregulated under treatment with different forms and rates of nitrogen.
View Article and Find Full Text PDFBackground: Soybean is an important oilseed crop that its development and production are affected by environmental stresses (such as saline-alkaline and water deficit).
Objectives: This experiment was performed with the aim of identifying candidate genes in saline-alkaline stress and water-deficit stress conditions using transcriptome analysis and to investigate the expression of these genes under water deficit stress conditions using RTqPCR.
Materials And Methods: In this experiment, soybean transcriptome data under saline-alkaline and water-deficit stress were downloaded from the NCBI website, and then the co-expression modules were determined for them and the gene network was plotted for each module, and finally, the hub genes were identified.
Milk thistle is an oil and medicinal crop known as an alternative oil crop with a high level of unsaturated fatty acids, which makes it a favorable edible oil for use in food production. To evaluate the importance of Milk thistle lipids in drought tolerance, an experiment was performed in field conditions under three different water deficit levels (Field capacity (FC), 70% FC and 40% FC). After harvesting seeds of the plant, their oily and methanolic extracts were isolated, and subsequently, types and amounts of lipids were measured using GC-MS.
View Article and Find Full Text PDF