Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.
View Article and Find Full Text PDFReal-time security surveillance and identity matching using face detection and recognition are central research areas within computer vision. The classical facial detection techniques include Haar-like, MTCNN, AdaBoost, and others. These techniques employ template matching and geometric facial features for detecting faces, striving for a balance between detection time and accuracy.
View Article and Find Full Text PDF