Affinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen-antibody interfaces to predict protein-protein interaction and mutations that confer increased affinity.
View Article and Find Full Text PDFInfluenza viral passaging through pre-vaccinated mice shows that emergent antigenic site mutations on the viral hemagglutinin (HA) impact host receptor-binding affinity and, therefore, the evolution of fitter influenza strains. To understand this phenomenon, we computed the Significant Interactions Network (SIN) for each residue and mapped the networks of antigenic site residues on a representative H1N1 HA. Specific antigenic site residues are 'linked' to receptor-binding site (RBS) residues via their SIN and mutations within "RBS-linked" antigenic residues can significantly influence receptor-binding affinity by impacting the SIN of key RBS residues.
View Article and Find Full Text PDFVastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding.
View Article and Find Full Text PDFThe human adaptation of influenza A viruses is critically governed by the binding specificity of the viral surface hemagglutinin (HA) to long (chain length) alpha2-6 sialylated glycan (alpha2-6) receptors on the human upper respiratory tissues. A recent study demonstrated that whereas the 1918 H1N1 pandemic virus, A/South Carolina/1/1918 (SC18), with alpha2-6 binding preference transmitted efficiently, a single amino acid mutation on HA resulted in a mixed alpha2-3 sialylated glycan (alpha2-3)/alpha2-6 binding virus (NY18) that transmitted inefficiently. To define the biochemical basis for the observed differences in virus transmission, in this study, we have developed an approach to quantify the multivalent HA-glycan interactions.
View Article and Find Full Text PDFA switch in specificity of avian influenza A viruses' hemagglutinin (HA) from avian-like (alpha2-3 sialylated glycans) to human-like (alpha2-6 sialylated glycans) receptors is believed to be associated with their adaptation to infect humans. We show that a characteristic structural topology--and not the alpha2-6 linkage itself--enables specific binding of HA to alpha2-6 sialylated glycans and that recognition of this topology may be critical for adaptation of HA to bind glycans in the upper respiratory tract of humans. An integrated biochemical, analytical and data mining approach demonstrates that HAs from the human-adapted H1N1 and H3N2 viruses, but not H5N1 (bird flu) viruses, specifically bind to long alpha2-6 sialylated glycans with this topology.
View Article and Find Full Text PDFGlycomics-an integrated approach to study structure-function relationships of complex carbohydrates (or glycans)-is an emerging field in this age of post-genomics. Realizing the importance of glycomics, many large scale research initiatives have been established to generate novel resources and technologies to advance glycomics. These initiatives are generating and cataloging diverse data sets necessitating the development of bioinformatic platforms to acquire, integrate, and disseminate these data sets in a meaningful fashion.
View Article and Find Full Text PDFIn comparison with genomics and proteomics, the advancement of glycomics has faced unique challenges in the pursuit of developing analytical and biochemical tools and biological readouts to investigate glycan structure-function relationships. Glycans are more diverse in terms of chemical structure and information density than are DNA and proteins. This diversity arises from glycans' complex nontemplate-based biosynthesis, which involves several enzymes and isoforms of these enzymes.
View Article and Find Full Text PDFComplex glycans that are located at the surface of cells, deposited in the extracellular matrix and attached to soluble signalling molecules have a crucial role in the phenotypic expression of cellular genotypes. However, owing to their structural complexity and some redundancy in terms of structures that elicit a function, the therapeutic potential of complex glycans has not been well exploited, with a few notable exceptions. This review outlines recent advances that promise to increase our ability to use complex glycans as therapeutics.
View Article and Find Full Text PDF