Background: Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics.
Results: ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types.
The use and/or misuse of opioids by pregnant women would expose the fetuses to these drugs during critical stages of development with serious effects for the newborn, like the neonatal abstinence syndrome (NAS). We have revisited an established chicken model for NAS to describe the distribution of morphine and methadone to the brain and explore its validity as a valuable alternative to rodent models. For this purpose, chicken eggs were injected with a single dose of 10 mg/kg or 20 mg/kg morphine or 20 mg/kg methadone onto the chorioallantoic membrane (CAM) on embryonal day 13.
View Article and Find Full Text PDFAntidepressants are used to treat depression and some anxiety disorders, including use in pregnant patients. The pharmacological actions of these drugs generally determine the uptake and metabolism of a series of neurotransmitters, such as serotonin, norepinephrine, or dopamine, along with an increase in BDNF expression. However, many aspects of antidepressant action remain unknown, particularly whether antidepressants interfere with normal neurodevelopment when taken by pregnant women.
View Article and Find Full Text PDFBackground: Imaging of neuronal differentiation and measurements of cell morphologies has led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images has increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics.
Results: We present ANDA, an analysis workflow for quantification of various aspects of neuronal morphology from high-throughput live-cell imaging screens.
Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10 - 3 ×10 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes.
View Article and Find Full Text PDFPrenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population.
View Article and Find Full Text PDFEpidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites.
View Article and Find Full Text PDFNeurotoxicol Teratol
April 2022
Exposing the immature nervous system to specific antiepileptic drugs (AEDs) during pregnancy is linked to neurodevelopmental disorders such as autism spectrum disorder (ASD). Newer AEDs like lamotrigine (LTG) are hailed as safer, but recent epidemiological data suggest that even LTG carries a risk, although much lower than that associated with valproic acid (VPA), an older AED, which is also known to cause morphological alterations in the developing brain. Increasing evidence highlights cerebellar abnormalities as important in ASD pathophysiology.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) can reach the fetal brain and contribute to developmental neurotoxicity. To explore the distribution of POPs to the fetal brain, we exposed chicken embryos to a POP mixture, containing 29 different compounds with concentrations based on blood levels measured in the Scandinavian human population. The mixture was injected into the allantois at embryonic day 13 (E13), aiming at a theoretical concentration of 10 times human blood levels.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
November 2021
Introduction: Rodent models are routinely used to assess the safety and developmental toxicity of pharmaceuticals, along with analysis of their distribution. These models require sacrifice of parent females, have challenges in the estimation of the number of embryos and stage of development, and are expensive and time-consuming. In this study, we used fertilized chicken eggs as an alternative model to address drug distribution to the developing brain of two antiepileptic drugs, valproic acid (VPA) and lamotrigine (LTG) at two developmental stages.
View Article and Find Full Text PDFThere is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs.
View Article and Find Full Text PDFReprod Toxicol
March 2021
Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated.
View Article and Find Full Text PDFHalogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life.
View Article and Find Full Text PDFToxicol Lett
March 2021
Disruption of neurite outgrowth is a marker for neurotoxicity. Persistent organic pollutants (POPs) are potential developmental neurotoxicants. We investigated their effect on neurite outgrowth in PC12 rat pheochromocytoma cells, in absence or presence of nerve growth factor (NGF), an inducer of neuronal differentiation.
View Article and Find Full Text PDFExposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs).
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are persistent man-made chemicals, ubiquitous in nature and present in human samples. Although restrictions are being introduced, they are still used in industrial processes as well as in consumer products. PFAAs cross the blood-brain-barrier and have been observed to induce adverse neurobehavioural effects in humans and animals as well as adverse effects in neuronal in vitro studies.
View Article and Find Full Text PDFThe use of opioids during pregnancy has been associated with neurodevelopmental toxicity in exposed children, leading to cognitive and behavioural deficits later in life. The N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B plays critical roles in cerebellar development, and methadone has been shown to possess NMDAR antagonist effect. Consequently, we wanted to explore if prenatal opioid exposure affected GluN2B subunit expression and NMDAR function in rat and chicken cerebellum.
View Article and Find Full Text PDFN-methyl-d-aspartate receptors (NMDAR) are widely expressed in the brain. GluN2B subunit-containing NMDARs has recently attracted significant attention as potential pharmacological targets, with emphasis on the functional properties of allosteric antagonists. We used primary cultures from chicken embryo forebrain (E10), expressing native GluN2B-containing NMDA receptors as a novel model system.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are persistent compounds used in many industrial as well as consumer products. Despite restrictions, these compounds are found at measurable concentrations in samples of human and animal origin. In the present study we examined whether the effects on cell viability of two sulfonated and four carboxylated PFAAs in cultures of cerebellar granule neurons (CGNs), could be associated with deleterious activation of the N-methyl-d-aspartate receptor (NMDA-R).
View Article and Find Full Text PDFMore than 90% of the cases of Parkinson's disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown.
View Article and Find Full Text PDFEpidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM.
View Article and Find Full Text PDFOestrogens with no or reduced oestrogen receptor (ER) binding properties are reported to have neuroprotective functions. However, we have previously shown that the hormonally inactive isomer of 17β-estradiol (17β-E), 17α-estradiol (17α-E), down-regulates glutathione (GSH) synthesis, and fails to rescue serum deprivation-induced cell death in the rat pheochromocytoma cell line PC12 in micromolar concentration. The present study examined cellular protective effects of new 17β-E analogs and 2-methoxyestradiol (2-ME) analogs with no or little oestrogen activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2017
17α-estradiol is a hormonally inactive isomer of 17β-estradiol, but with similar potency as neuroprotector. However, we have previously reported that pretreatment with high concentration (10 μM) of both estrogens abolishes their neuroprotection in rat cerebellar granule neurons. Here, we have examined neuroprotective properties of 17α-estradiol against glutamate-induced excitotoxicity in chicken cerebellar granule neurons using low (1 nM) and high concentration.
View Article and Find Full Text PDFImmediate early gene nerve growth factor-induced clone B (NGFI-B), a nuclear receptor important for differentiation and apoptosis, is expressed in mice and rat cerebellum from an early stage of postnatal development. Following apoptotic stimuli NGFI-B translocates to mitochondria to initiate cell death processes. Controlled cell death is critical for correct cerebellar development.
View Article and Find Full Text PDFBackground: Molecular understanding of lung development is crucial for developing therapies and diagnostic tools. Animal models with altered thyroid hormone signaling provide mechanistic insight into thyroid-dependent neonatal lung disease. Repression of Klf2 (Krüppel-like factor 2), a suggested T3 target gene, is associated with disrupted lung development in mice.
View Article and Find Full Text PDF