Publications by authors named "Ragnar Kiebach"

TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet cathode. The surfaces and cross-sections of the cells were analyzed, and several elemental impurities like Si, Ca and Na were identified and spatially mapped and their enrichment and migration during operation is reported.

View Article and Find Full Text PDF

X-ray diffraction (XRD), in situ energy-dispersive X-ray diffraction (EDXRD), X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and magnetic measurements were applied to investigate the effects of lithium deintercalation on pseudolayered Li(0.70)CrTi(0.25)Se(2).

View Article and Find Full Text PDF

A hydrothermal approach employing an amine as reducing agent enables synthesis of an analogue of the arsenato(iii)-oxovanadate {V(15)As(6)}, representing the first systematic variation of this intensely studied magnetic system.

View Article and Find Full Text PDF

The intercalation reaction between Cr(4)TiSe(8) and Li was investigated from a kinetic and an electrochemical perspective. The structural phase transition from monoclinic to trigonal symmetry was probed by in situ energy-dispersive X-ray diffraction (in situ EDXRD) for chemical intercalation with butyllithium (BuLi). A change in the kinetic mechanism was detected for the reaction at room temperature; this was interpreted in terms of a trend from phase boundary control to diffusion control.

View Article and Find Full Text PDF

The reaction of Cr/Se multilayers when they are annealed occurs in two steps: interdiffusion of the single layers to an amorphous Cr-Se alloy and crystallization of Cr3Se4. Both reaction steps were characterized using various techniques. At approximately 300 degrees C the layers have interdiffused completely to form a homogeneous amorphous Cr-Se alloy.

View Article and Find Full Text PDF