Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice.
View Article and Find Full Text PDFNeuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation.
View Article and Find Full Text PDFPhospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells.
View Article and Find Full Text PDFγ-Secretase affects many physiological processes through targeting >100 substrates; malfunctioning links γ-secretase to cancer and Alzheimer's disease. The spatiotemporal regulation of its stoichiometric assembly remains unresolved. Fractionation, biochemical assays, and imaging support prior formation of stable dimers in the ER, which, after ER exit, assemble into full complexes.
View Article and Find Full Text PDFPolyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown.
View Article and Find Full Text PDFγ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer's disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts.
View Article and Find Full Text PDFSemin Cell Dev Biol
September 2020
γ-Secretase cleavage is essential for many biological processes and its dysregulation is linked to disease, including cancer and Alzheimer's disease. Therefore, understanding the regulation of its activity is of major importance to improve drug design and develop novel therapeutics. γ-Secretase belongs to the family of intramembrane cleaving proteases (i-CLiPs), which cleaves its substrates in a process termed regulated intramembrane proteolysis (RIP).
View Article and Find Full Text PDFThe metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes.
View Article and Find Full Text PDFProprotein Convertase 7 (PC7) is a Furin-like endoprotease that cleaves precursor proteins at basic amino acids. PC7 is concentrated in the trans-Golgi network (TGN) but it shuttles between the plasma membrane and the TGN depending on sequences in the cytoplasmic tail. A short region containing a three amino acids motif, P-L-C, is essential and sufficient for internalization of PC7 but not for TGN localization, which requires the additional presence of the juxtamembrane region.
View Article and Find Full Text PDFBackground: The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase.
Methods: We searched for tetraspanins with altered expression in AD brains.
Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane.
View Article and Find Full Text PDFMutations in the and genes have provided direct evidence for the central role of aberrant amyloid β (Aβ) peptide production in familial Alzheimer's disease (AD). Newly identified risk factors will further help us to unravel how derailed physiological and cell biological processes lead to identical pathogenesis in late‐onset AD (LOAD). Ubelmann now unveil in this issue how two of such risk factors, Bin1 and CD2AP, regulate the encounter of APP and BACE1 in axonal and dendritic endosomes, emphasizing endosomal transport balance as a critical factor in AD pathogenesis 1.
View Article and Find Full Text PDFCell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids.
View Article and Find Full Text PDFγ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2013
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease.
View Article and Find Full Text PDFDendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formation/maintenance, thereby slowing spine morphogenesis.
View Article and Find Full Text PDFPresenilins (PSENs) form the catalytic component of the γ-secretase complex, responsible for intramembrane proteolysis of amyloid precursor protein (APP) and Notch, among many other membrane proteins. Previously, we identified a PSEN1-binding domain in APP, encompassing half of the transmembrane domain following the amyloid β (Aβ) sequence. Based on this, we designed peptides mimicking this interaction domain with the aim to selectively block APP processing and Aβ generation through interfering with enzyme-substrate binding.
View Article and Find Full Text PDFVisualization of organelles and molecules at nanometer resolution is revolutionizing the biological sciences. However, such technology is still limited for many cell biologists. We present here a novel approach using photobleaching microscopy with non-linear processing (PiMP) for sub-diffraction imaging.
View Article and Find Full Text PDFAmyloid β (Aβ) peptides, the primary constituents of senile plaques and a hallmark in Alzheimer's disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6).
View Article and Find Full Text PDFβ-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes.
View Article and Find Full Text PDFBecause the functional borders of the intermediate compartment (IC) are not well defined, the spatial map of the transport machineries operating between the endoplasmic reticulum (ER) and the Golgi apparatus remains incomplete. Our previous studies showed that the IC consists of interconnected vacuolar and tubular parts with specific roles in pre-Golgi trafficking. Here, using live cell imaging, we demonstrate that the tubules containing the GTPase Rab1A create a long-lived membrane compartment around the centrosome.
View Article and Find Full Text PDFA prerequisite for understanding the cellular functions of an unknown protein is the establishment of its subcellular localization. As increasing numbers of novel proteins of the biosynthetic pathway are currently being identified, accessible new methods are required to facilitate their localization. Differentiating rat pheochromocytoma (PC12) cells reorganize their biosynthetic membrane compartments as they develop neurite-like processes.
View Article and Find Full Text PDFThe term regulated intramembrane proteolysis (RIP) emerged from converging mechanisms aiming to release or activate signaling fragments or transcription factors from their respective membrane-anchored precursors. To date, four families of intramembrane proteases exist each of which process their own specific target substrates. As such, RIP initiates or abrogates a multitude of signaling cascades and plays a pivotal role in many physiological processes.
View Article and Find Full Text PDFThe function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body.
View Article and Find Full Text PDF