Publications by authors named "Ragini Vittal"

Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD).

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is characterized by ongoing tissue damage and scarring in the lungs, driven by persistent activation of mesenchymal cells related to various signaling pathways.
  • The study focuses on the role of the transcription factor NFAT1, which controls a key profibrotic mediator (autotaxin) in lung mesenchymal cells, finding that mice lacking NFAT1 have improved survival and less lung fibrosis after injury.
  • The research indicates that NFAT1 activates profibrotic processes in IPF and suggests it could be a potential target for therapeutic intervention in treating the disease.
View Article and Find Full Text PDF

Background: Small airway inflammation and fibrosis or bronchiolitis obliterans (BO) is the predominant presentation of chronic lung allograft dysfunction (CLAD) post-lung transplantation. Carbon monoxide (CO) is a critical endogenous signaling transducer with known anti-inflammatory and anti-fibrotic effects but its therapeutic potential in CLAD remains to be fully elucidated.

Methods: Here we investigate the effect of inhaled CO in modulating chronic lung allograft rejection pathology in a murine orthotopic lung transplant model of BO (B6D2F1/J→DBA/2J).

View Article and Find Full Text PDF

CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6.

View Article and Find Full Text PDF

In this study, we demonstrate that forkhead box F1 (FOXF1), a mesenchymal transcriptional factor essential for lung development, was retained in a topographically distinct mesenchymal stromal cell population along the bronchovascular space in an adult lung and identify this distinct subset of collagen-expressing cells as key players in lung allograft remodeling and fibrosis. Using Foxf1-tdTomato BAC (Foxf1-tdTomato) and Foxf1-tdTomato Col1a1-GFP mice, we show that Lin-Foxf1+ cells encompassed the stem cell antigen 1+CD34+ (Sca1+CD34+) subset of collagen 1-expressing mesenchymal cells (MCs) with a capacity to generate CFU and lung epithelial organoids. Histologically, FOXF1-expressing MCs formed a 3D network along the conducting airways; FOXF1 was noted to be conspicuously absent in MCs in the alveolar compartment.

View Article and Find Full Text PDF
Article Synopsis
  • FOXF1 is a transcription factor that helps regulate lung mesenchymal stromal cells (LR-MSCs) and is found in lower levels in fibrotic cells compared to non-fibrotic ones.
  • Silencing FOXF1 increases the migratory ability of LR-MSCs by upregulating genes involved in proliferation and inflammation, as well as enhancing the activity of Autotaxin (ATX).
  • FOXF1 represses ATX through specific binding sites in its promoter, and the promotion of LR-MSC migration due to FOXF1 loss can be counteracted by inhibiting ATX and its receptor, LPA1.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding the mechanisms behind allograft fibrosis and chronic graft failure is crucial for improving transplant outcomes, particularly in cases of restrictive allograft syndrome (RAS).
  • Researchers used a specific lung transplant model to show that humoral immune responses, especially involving B cells, play a significant role in developing RAS.
  • Findings indicated that blocking B cell activity reduced fibrosis in lung allografts, suggesting targeted therapies could improve management of different types of chronic lung allograft dysfunction.
View Article and Find Full Text PDF
Article Synopsis
  • Histopathologic studies indicate that chronic lung allograft dysfunction (CLAD) involves inflammation from mononuclear cells (MNC) and growth from mesenchymal cells (MC), with interleukin 6 (IL-6) playing a key role in their interaction.
  • Analysis of bronchoalveolar lavage fluid shows that IL-6 and its receptor levels are significantly higher in CLAD-affected lungs compared to before the onset of the disease.
  • Research suggests that MNCs increase IL-6 production when interacting with MCs, leading to enhanced MC activity and fibrosis, while experiments on mice demonstrate that blocking IL-6 can significantly reduce lung fibrosis.
View Article and Find Full Text PDF

Metabolic Syndrome (MetS) has detrimental effects on the bladder, including detrusor underactivity. The progression and mechanism of disease are poorly understood. A swine model for diabetic bladder dysfunction (DBD) was established because of the pig's human-sized bladder and its ability to develop MetS by dietary modification alone.

View Article and Find Full Text PDF

Mammalian target of rapamycin complex 2 (mTORC2) has been shown to regulate mTORC1/4E-BP1/eIF4E signaling and collagen I expression in mesenchymal cells (MCs) during fibrotic activation. Here we investigated the regulation of the mTORC2 binding partner mammalian stress-activated protein kinase-interacting protein 1 (mSin1) in MCs derived from human lung allografts and identified a novel role for mSin1 during fibrosis. mSin1 was identified as a common downstream target of key fibrotic pathways, and its expression was increased in MCs in response to pro-fibrotic mediators: lysophosphatidic acid (LPA), transforming growth factor β, and interleukin 13.

View Article and Find Full Text PDF

While our previous studies suggest that limiting bleomycin-induced complement activation suppresses TGF-β signaling, the specific hierarchical interactions between TGF-β and complement in lung fibrosis are unclear. Herein, we investigated the mechanisms underlying TGF-β-induced complement activation in the pathogenesis of lung fibrosis. C57-BL6 mice were given intratracheal instillations of adenoviral vectors overexpressing TGF-β (Ad-TGFβ) or the firefly gene-luciferase (Ad-Luc; control).

View Article and Find Full Text PDF

Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury TGF-β in murine bronchiolitis obliterans; that TGF-β and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) injury and apoptosis are prominent pathological features of idiopathic pulmonary fibrosis (IPF). There is evidence of AEC plasticity in lung injury repair response and in IPF. In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-β1 (TGF-β1).

View Article and Find Full Text PDF

Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE).

View Article and Find Full Text PDF

The epithelial complement inhibitory proteins (CIPs) cluster of differentiation 46 and 55 (CD46 and CD55) regulate circulating immune complex-mediated complement activation in idiopathic pulmonary fibrosis (IPF). Our previous studies demonstrated that IL-17A mediates epithelial injury via transforming growth factor β1 (TGF-β1) and down-regulates CIPs. In the current study, we examined the mechanistic role of TGF-β1 in complement activation-mediated airway epithelial injury in IPF pathogenesis.

View Article and Find Full Text PDF

The etiology and pathogenesis of idiopathic interstitial lung disease (ILD) remain incompletely understood. Genetic susceptibility to ILD has been demonstrated in previous studies. It is well known that EGFR inhibitors can induce ILD in human lung cancer patient with ethnic differences, which prompted us to hypothesize that genetic variation in EGFR pathway genes confer susceptibility to ILD.

View Article and Find Full Text PDF

Rationale: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scarring and matrix deposition. Recent reports highlight an autoimmune component in IPF pathogenesis. We have reported anti-col(V) immunity in IPF patients.

View Article and Find Full Text PDF

Obliterative bronchiolitis (OB) post-lung transplantation involves IL-17-regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB is unknown. The current study examines the role of complement activation in OB.

View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2, or MK2), a serine/threonine kinase downstream of p38 mitogen-activated protein kinase, has been implicated in inflammation and fibrosis. Compared with pathologically normal lung tissue, significantly higher concentrations of activated MK2 are evident in lung biopsies of patients with idiopathic pulmonary fibrosis (IPF). Expression is localized to fibroblasts and epithelial cells.

View Article and Find Full Text PDF

Obliterative bronchiolitis (OB), a fibrotic airway lesion, is the leading cause of death after lung transplantation. Type V collagen [col(V)] overexpression and IL-17-mediated anti-col(V) immunity are key contributors to OB pathogenesis. Here, we report a previously undefined role of IL-17 in inducing col(V) overexpression, leading to epithelial mesenchymal transition (EMT) and subsequent OB.

View Article and Find Full Text PDF

Members of the NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O(2) to reactive oxygen species, have increased in number during eukaryotic evolution. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants.

View Article and Find Full Text PDF

Rationale: The insulin-like growth factor-I (IGF-I) pathway is an important determinant of survival and proliferation in many cells. However, little is known about the role of the IGF-I pathway in lung injury. We previously showed elevated levels of IGF-I in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome.

View Article and Find Full Text PDF

Tissue injury in mammals triggers both inflammatory and repair responses that, in some contexts, results in fibrosis. Fibrosis is characterized by the persistence of activated myofibroblasts, ineffective re-epithelialization, and variable degrees of inflammation within injured tissues. The protein kinase inhibitor (PKI), imatinib mesylate, has been proposed as a potential antifibrotic therapeutic agent.

View Article and Find Full Text PDF