The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters.
View Article and Find Full Text PDFKnowledge of the mechanical properties of blood vessels and determining appropriate constitutive relations are essential in developing methodologies for accurate prognosis of vascular diseases. We examine the directional variation of the mechanical properties of the porcine thoracic aorta by performing uniaxial extension tests on dumbbell-shaped specimens cut at five different orientations with respect to the circumferential direction of the aorta. Specimens in all the orientations considered exhibit a nonlinear constitutive response that is typical of collagenous soft tissues.
View Article and Find Full Text PDFUniaxial testing remains the most common modality of mechanical analysis for biological and other soft materials; however, biaxial testing enables a more comprehensive understanding of these materials' mechanical behavior. In recent years, a number of commercially available biaxial testing systems designed for biological materials have been produced; however, there are common limitations that are often associated with using these systems. For example, the range of allowable sample geometries are relatively constrained, the clamping systems are relatively limited with respect to allowable configurations, the load and displacement ranges are relatively small, and the software and control elements offer relatively limited options.
View Article and Find Full Text PDF