Hemostatic devices are critical for managing emergent severe bleeding. With the increased use of anticoagulant therapy, there is a need for next-generation hemostats. We rationalized that a hemostat with an architecture designed to increase contact with blood, and engineered from a material that activates a distinct and undrugged coagulation pathway can address the emerging need.
View Article and Find Full Text PDFThe ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time.
View Article and Find Full Text PDFThe centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)].
View Article and Find Full Text PDFNanoscale drug delivery vehicles have been harnessed extensively as carriers for cancer chemotherapeutics. However, traditional pharmaceutical approaches for nanoformulation have been a challenge with molecules that exhibit incompatible physicochemical properties, such as platinum-based chemotherapeutics. Here we propose a paradigm based on rational design of active molecules that facilitate supramolecular assembly in the nanoscale dimension.
View Article and Find Full Text PDFSynthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment.
View Article and Find Full Text PDFTherapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model.
View Article and Find Full Text PDFCisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation.
View Article and Find Full Text PDFObjective: Dysregulation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a hallmark of human cancer, occurring in a majority of tumors. Activation of this pathway is critical for transformation and also for the angiogenic switch, which is a key step for tumor progression. The objective of this study was to engineer a PI3K inhibitor-loaded biodegradable nanoparticle and to evaluate its efficacy.
View Article and Find Full Text PDFIn the present study, we report the novel application of polyhydroxylated fullerenes (fullerenols) in cancer drug delivery. The facile synthetic procedure for generating multiple hydroxyl groups on the fullerene cage offers scope for high drug loading in addition to conferring hydrophilicity. Doxorubicin, a first line cancer chemotherapeutic, was conjugated to fullerenols through a carbamate linker, achieving ultrahigh loading efficiency.
View Article and Find Full Text PDFDrug discovery strategies based on natural products and traditional medicines are re-emerging as attractive options. We suggest that drug discovery and development need not always be confined to new molecular entities. Rationally designed, carefully standardized, synergistic traditional herbal formulations and botanical drug products with robust scientific evidence can also be alternatives.
View Article and Find Full Text PDFThe MAPK signal transduction cascade is dysregulated in a majority of human tumors. Here we report that a nanoparticle-mediated targeting of this pathway can optimize cancer chemotherapy. We engineered nanoparticles from a unique hexadentate-polyD,L-lactic acid-co-glycolic acid polymer chemically conjugated to PD98059, a selective MAPK inhibitor.
View Article and Find Full Text PDF