Publications by authors named "Raghu Vamshi"

Monosodium methanearsonate (MSMA), a sodium salt of monomethylarsonic acid (MMA), is a selective contact herbicide used for the control of a broad spectrum of weeds. In water, MSMA dissociates to ions of sodium (Na) and monomethylarsonate (MMA) that is stable and does not transform abiotically. In soils characteristic of MSMA use, several simultaneous processes can occur: (1) microbial methylation of MMA to dimethylarsinic acid (DMA), (2) microbial demethylation of MMA to inorganic arsenic (iAs), (3) methylation of iAs to MMA, and (4) sorption and sequestration of MMA and its metabolites to soil minerals.

View Article and Find Full Text PDF

A modeling framework was created for the development of spatially explicit aquatic exposure models for any region or country of interest for chemicals disposed of down the drain. The framework relies on globally available data sets for river flow and population, and locally available data sets for wastewater treatment infrastructure and domestic water use, and leverages the iSTREEM chemical routing algorithm. The framework was applied to China and Japan as case study countries.

View Article and Find Full Text PDF

Background: Odontogenic cysts and tumors exhibit varying degrees of aggressiveness in their biological behavior. Odontogenic keratocyst (OKC), dentigerous cyst (DC), ameloblastoma are most common odontogenic cysts and tumors to occur in the oral cavity. Myofibroblasts (MFs) in the connective tissue stroma participate in the matrix degradation process by secreting matrix metalloproteinase 2, transforming growth factor beta1 and may contribute to variation in their biological behavior.

View Article and Find Full Text PDF

Down-the-drain exposure models provide a valuable tool for estimating environmental exposure to substances which are treated and discharged by municipal wastewater-treatment plants (WWTPs). Microplastics may enter WWTPs from consumer activities and disposal. An exposure framework was developed using the iSTREEM® model, which estimates spatially explicit concentrations of substances in riverine systems across the United States and portions of Ontario, Canada.

View Article and Find Full Text PDF

Sewer residence time (the amount of time a given volume of wastewater resides in a sewer system prior to treatment) can have a significant influence on predictions of environmental fate and transport of wastewater constituents and corresponding risk assessment. In this study, a geographic information systems-based approach for estimating the distribution of sewer residence times for the U.S.

View Article and Find Full Text PDF

The "in-stream exposure model" iSTREEM(®) , a Web-based model made freely available to the public by the American Cleaning Institute, provides a means to estimate concentrations of "down-the-drain" chemicals in effluent, receiving waters, and drinking water intakes across national and regional scales under mean annual and low-flow conditions. We provide an overview of the evolution and utility of the iSTREEM model as a screening-level risk assessment tool relevant for down-the-drain products. The spatial nature of the model, integrating point locations of facilities along a hydrologic network, provides a powerful framework to assess environmental exposure and risk in a spatial context.

View Article and Find Full Text PDF

Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.

View Article and Find Full Text PDF

Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products.

View Article and Find Full Text PDF