Publications by authors named "Raghanti M"

Noninvasive evaluations of hormones can contribute to the assessment of health and welfare of animals. Variations in insulin levels and sensitivity, for example, have been linked to health concerns in non-human and human primates including insulin resistance, diabetes, and heart disease, the leading cause of death in zoo-housed gorillas. Few published studies have assessed insulin concentrations in western lowland gorillas (Gorilla gorilla gorilla), and all did so using serum.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and its associated pathology have been primarily identified in humans, who have relatively large brains and long lifespans. To expand what is known about aging and neurodegeneration across mammalian species, we characterized amyloid-beta (Aβ) and tau lesions in five species of aged felids (n = 9; cheetah, clouded leopard, African lion, serval, Siberian tiger). We performed immunohistochemistry to detect Aβ40 and Aβ42 in plaques and vessels and hyperphosphorylated tau in the temporal lobe gyrus sylvius and in the CA1 and CA3 subfields of the hippocampus.

View Article and Find Full Text PDF

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus.

View Article and Find Full Text PDF

Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.

View Article and Find Full Text PDF

Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables.

View Article and Find Full Text PDF

Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how aging and conditions similar to Alzheimer's disease (AD) affect the brain's immune response in male and female chimpanzees, focusing on glial activation, particularly astrogliosis and microglial activation.
  • - Severe astrogliosis in chimpanzees showed increased levels of certain astrocytes in the dorsolateral prefrontal cortex, but did not significantly coincide with microglial activation or AD lesions, suggesting unique aging patterns in these primates.
  • - The findings reveal differences in the inflammatory processes of chimpanzees compared to humans, contributing valuable insights for better understanding human-specific neurodegenerative disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Dehydroepiandrosterone-sulfate (DHEAS) is a key androgen linked to various biological functions, and its relationship with cognitive decline is uncertain, especially in nonhuman primates like chimpanzees.
  • A study assessed DHEAS and cortisol levels in 107 adult chimpanzees, with a closer look at 21 individuals to explore cognitive functions and their associations with hormonal levels while considering factors like age and sex.
  • Results indicated that DHEAS levels decrease with age, and while the DHEAS/cortisol ratio was positively linked to cognitive function, it emerged as a better predictor of spatial cognition than DHEAS alone.
View Article and Find Full Text PDF

Astrocytes are the main homeostatic cell of the brain involved in many processes related to cognition, immune response, and energy expenditure. It has been suggested that the distribution of astrocytes is associated with brain size, and that they are specialized in humans. To evaluate these, we quantified astrocyte density, soma volume, and total glia density in layer I and white matter in Brodmann's area 9 of humans, chimpanzees, baboons, and macaques.

View Article and Find Full Text PDF

While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes.

View Article and Find Full Text PDF

With rates of psychiatric illnesses such as depression continuing to rise, additional preclinical models are needed to facilitate translational neuroscience research. In the current study, the raccoon (Procyon lotor) was investigated due to its similarities with primate brains, including comparable proportional neuronal densities, cortical magnification of the forepaw area, and cortical gyrification. Specifically, we report on the cytoarchitectural characteristics of raccoons profiled as high, intermediate, or low solvers in a multiaccess problem-solving task.

View Article and Find Full Text PDF

Recent evidence suggests that increased dopaminergic signaling within the dorsal striatum played a central role in the evolution of the human brain. This increase has been linked to human prosociality and language in what has been described as a dopamine-dominated striatum personality style. Increased striatal dopamine is associated with an increase in ventral striatal activity and promotes externally driven behaviors, including cooperation and social conformity.

View Article and Find Full Text PDF

Several primate species have been shown to exhibit age-related changes in cognition, brain, and behavior. However, severe neurodegenerative illnesses, such as Alzheimer's disease (AD), were once thought to be uniquely human. Recently, some chimpanzees naturally were documented to develop both neurofibrillary tangles and amyloid plaques, the main characteristics of AD pathology.

View Article and Find Full Text PDF

Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease.

View Article and Find Full Text PDF

In humans, neutrophil to lymphocyte ratio (NLR) has been used as a clinical tool in diagnosis and/or prognosis of a variety of cancers and medical conditions, as well as in measuring physiological stress over time. Given the close phylogenetic relationship and physical similarities between humans and apes, NLR may similarly be a useful diagnostic tool in assessing chimpanzee health. Only one study has examined NLR in apes, reporting that NLR increased with age and was affected by body-mass index and sex.

View Article and Find Full Text PDF

Chimpanzees are the species most closely related to humans, yet age-related changes in brain and cognition remain poorly understood. The lack of studies on age-related changes in cognition in chimpanzees is particularly unfortunate in light of the recent evidence demonstrating that this species naturally develops Alzheimer's disease (AD) neuropathology. Here, we tested 213 young, middle-aged, and elderly captive chimpanzees on the primate cognitive test battery (PCTB), a set of 13 tasks that assess physical and social cognition in nonhuman primates.

View Article and Find Full Text PDF

The genus Macaca is an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods.

View Article and Find Full Text PDF

In the absence of disease, ageing in the human brain is accompanied by mild cognitive dysfunction, gradual volumetric atrophy, a lack of significant cell loss, moderate neuroinflammation, and an increase in the amyloid beta (A) and tau proteins. Conversely, pathologic age-related conditions, particularly Alzheimer's disease (AD), result in extensive neocortical and hippocampal atrophy, neuron death, substantial A plaque and tau-associated neurofibrillary tangle pathologies, glial activation and severe cognitive decline. Humans are considered uniquely susceptible to neurodegenerative disorders, although recent studies have revealed A and tau pathology in non-human primate brains.

View Article and Find Full Text PDF

Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II-III and infragranular layers V-VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans.

View Article and Find Full Text PDF

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability.

View Article and Find Full Text PDF

Monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) are enzymes that degrade several monoamines of the central nervous system and have long been implicated in the modulation of social behavior. Macaque monkeys are a suitable model for investigating the role of functional monoamine oxidase polymorphisms in behavior modulation given the high amount of social diversity among the nearly two dozen species. The present study reports allele frequencies for two polymorphisms, MAOA-LPR and MBin2, in samples of rhesus (Macaca mulatta) and Japanese (M.

View Article and Find Full Text PDF

Cardiac disease is a major cause of morbidity and mortality for adult gorillas. Previous research indicates a sex-based difference with predominantly males demonstrating evidence of left ventricular hypertrophy. To evaluate these findings, we analyzed serum markers with cardiac measures in a large sample of gorillas.

View Article and Find Full Text PDF

Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy.

View Article and Find Full Text PDF