Publications by authors named "Raghad Aljarf"

While drug combination therapies are of great importance, particularly in cancer treatment, identifying novel synergistic drug combinations has been a challenging venture. Computational methods have emerged in this context as a promising tool for prioritizing drug combinations for further evaluation, though they have presented limited performance, utility, and interpretability. Here, we propose a novel predictive tool, piscesCSM, that leverages graph-based representations to model small molecule chemical structures to accurately predict drug combinations with favourable anticancer synergistic effects against one or multiple cancer cell lines.

View Article and Find Full Text PDF

Variants in non-homologous end joining (NHEJ) DNA repair genes are associated with various human syndromes, including microcephaly, growth delay, Fanconi anemia, and different hereditary cancers. However, very little has been done previously to systematically record the underlying molecular consequences of NHEJ variants and their link to phenotypic outcomes. In this study, a list of over 2983 missense variants of the principal components of the NHEJ system, including DNA Ligase IV, DNA-PKcs, Ku70/80 and XRCC4, reported in the clinical literature, was initially collected.

View Article and Find Full Text PDF

Teratogenic drugs can lead to extreme fetal malformation and consequently critically influence the fetus's health, yet the teratogenic risks associated with most approved drugs are unknown. Here, we propose a novel predictive tool, embryoTox, which utilizes a graph-based signature representation of the chemical structure of a small molecule to predict and classify molecules likely to be safe during pregnancy. embryoTox was trained and validated using bioactivity data of over 700 small molecules with characterized teratogenicity effects.

View Article and Find Full Text PDF

Protein phosphorylation acts as an essential on/off switch in many cellular signaling pathways. This has led to ongoing interest in targeting kinases for therapeutic intervention. Computer-aided drug discovery has been proven a useful and cost-effective approach for facilitating prioritization and enrichment of screening libraries, but limited effort has been devoted providing insights on what makes a potent kinase inhibitor.

View Article and Find Full Text PDF

The design of novel, safe, and effective drugs to treat human diseases is a challenging venture, with toxicity being one of the main sources of attrition at later stages of development. Failure due to toxicity incurs a significant increase in costs and time to market, with multiple drugs being withdrawn from the market due to their adverse effects. Cardiotoxicity, for instance, was responsible for the failure of drugs such as fenspiride, propoxyphene, and valdecoxib.

View Article and Find Full Text PDF

BRCA1 and BRCA2 are tumour suppressor genes that play a critical role in maintaining genomic stability via the DNA repair mechanism. DNA repair defects caused by BRCA1 and BRCA2 missense variants increase the risk of developing breast and ovarian cancers. Accurate identification of these variants becomes clinically relevant, as means to guide personalized patient management and early detection.

View Article and Find Full Text PDF

The development of new, effective, and safe drugs to treat cancer remains a challenging and time-consuming task due to limited hit rates, restraining subsequent development efforts. Despite the impressive progress of quantitative structure-activity relationship and machine learning-based models that have been developed to predict molecule pharmacodynamics and bioactivity, they have had mixed success at identifying compounds with anticancer properties against multiple cell lines. Here, we have developed a novel predictive tool, pdCSM-cancer, which uses a graph-based signature representation of the chemical structure of a small molecule in order to accurately predict molecules likely to be active against one or multiple cancer cell lines.

View Article and Find Full Text PDF

Mutations in protein-coding regions can lead to large biological changes and are associated with genetic conditions, including cancers and Mendelian diseases, as well as drug resistance. Although whole genome and exome sequencing help to elucidate potential genotype-phenotype correlations, there is a large gap between the identification of new variants and deciphering their molecular consequences. A comprehensive understanding of these mechanistic consequences is crucial to better understand and treat diseases in a more personalized and effective way.

View Article and Find Full Text PDF