Publications by authors named "Raghad Abuhamdan"

Polyester based in situ forming implants (ISFIs) are injectable long-acting drug delivery systems that offer a wide range of unique advantages. As a result of these advantages, two relatively high molecular weight, ester terminated grades of poly (D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) were evaluated for their ability (i) to form ISFIs loaded with carvedilol, and (ii) to control its release both in vitro and in vivo. At a polymeric concentration of 40% w/w, implant solutions were syringeable, injectable, and able to encapsulate carvedilol to a high degree (encapsulated drug% > 97%).

View Article and Find Full Text PDF

Hypothyroidism is a chronic condition combated by a daily oral supplementation of levothyroxine. In addition to the need for frequent dosing, oral administration may result in variable absorption of the drug leading to a failure in achieving normal thyroid function. Therefore, the development of a long-acting injectable system capable of delivering the drug is necessary.

View Article and Find Full Text PDF

Long-term exposure to solar radiation can lead to skin damage such as photoageing, and photocarcinogenesis. This can be prevented by topically applying α-tocopherol phosphate (α-TP). The major challenge is that a significant amount of α-TP needs to reach viable skin layers for effective photoprotection.

View Article and Find Full Text PDF

An electroanalytical electrode for the detection of albendazole (ABZ) active ingredient in pharmaceutical dosage form and in contaminated animal-derived products was developed using a glassy carbon electrode modified with platinum-palladium nanoparticles. The electro-catalytic performance of the bimetallic-modified glassy carbon electrode was compared with its bare counterpart. Under optimized conditions, the modified electrode revealed two well-resolved anodic peak currents at 1.

View Article and Find Full Text PDF

We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated.

View Article and Find Full Text PDF