Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations.
View Article and Find Full Text PDFMacrophage-targeted therapies, including macrophage colony-stimulating factor 1 (CSF1), have been shown to have pro-repair impacts post-fracture. Preclinical/clinical applications of CSF1 have been expedited by development of chimeric CSF1-Fc which has extended circulating half-life. Here, we used mouse models to investigate the bone regenerative potential of CSF1-Fc in healthy and osteoporotic fracture.
View Article and Find Full Text PDFOsteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity.
View Article and Find Full Text PDFBackground: Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients.
View Article and Find Full Text PDFOsteal macrophages (osteomacs) contribute to bone homeostasis and regeneration. To further distinguish their functions from osteoclasts, which share many markers and growth factor requirements, we developed a rapid, enzyme-free osteomac enrichment protocol that permitted characterization of minimally manipulated osteomacs by flow cytometry. Osteomacs differ from osteoclasts in expression of Siglec1 (CD169).
View Article and Find Full Text PDFBetter understanding of bone growth and regeneration mechanisms within periosteal tissues will improve understanding of bone physiology and pathology. Macrophage contributions to bone biology and repair have been established but specific investigation of periosteal macrophages has not been undertaken. We used an immunohistochemistry approach to characterize macrophages in growing murine bone and within activated periosteum induced in a mouse model of bone injury.
View Article and Find Full Text PDFMacrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages.
View Article and Find Full Text PDFIn this article, Millard and colleagues show that intrauterine bone marrow transplantation in the oim/oim mouse model of osteogenesis imperfecta yields hematopoietic microchimerism in the absence of donor osteopoiesis or phenotypic improvement. Bone-associated donor cells were not bone-forming osteoblasts, but osteoclasts (bone resorbing cells of the hematopoietic lineage) and osteal macrophages (bone regulatory cells of the hematopoietic lineage).
View Article and Find Full Text PDFThe distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80(+)Mac-2(+)) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front.
View Article and Find Full Text PDFSimilarly to other tissues, the bone marrow contains subsets of resident tissue macrophages, which are essential to maintain bone formation, functional hematopoietic stem cell (HSC) niches, and erythropoiesis. Pharmacologic doses of granulocyte colony-stimulating factor (G-CSF) mobilize HSC in part by interfering with the HSC niche-supportive function of BM resident macrophages. Because bone marrow macrophages are key to both maintenance of HSC within their niche and erythropoiesis, we investigated the effect of mobilizing doses of G-CSF on erythropoiesis in mice.
View Article and Find Full Text PDFPrevious studies have generated conflicting results regarding the contribution of B cells to bone formation during physiology and repair. Here, we have investigated the role of B cells in osteoblast-mediated intramembranous anabolic bone modeling. Immunohistochemistry for CD45 receptor expression indicated that B cells had no propensity or aversion for endosteal regions or sites of bone modeling and/or remodeling in wild-type mice.
View Article and Find Full Text PDFMacrophages have reemerged to prominence with widened understanding of their pleiotropic contributions to many biologies and pathologies. This includes clear advances in revealing their importance in wound healing. Here we have focused on the current state of knowledge with respect to bone repair, which has received relatively little scientific attention compared with its soft-tissue counterparts.
View Article and Find Full Text PDFThe CXCR4 antagonist AMD3100 is progressively replacing cyclophosphamide (CYP) as adjuvant to granulocyte colony-stimulating factor (G-CSF) to mobilize hematopoietic stem cells (HSC) for autologous transplants in patients who failed prior mobilization with G-CSF alone. It has recently emerged that G-CSF mediates HSC mobilization and inhibits bone formation via specific bone marrow (BM) macrophages. We compared the effect of these three mobilizing agents on BM macrophages, bone formation, osteoblasts, HSC niches and HSC reconstitution potential.
View Article and Find Full Text PDFBone-lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80(+) Mac-2(-/low) TRACP(-) osteomacs and F4/80(+) Mac-2(hi) TRACP(-) inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course.
View Article and Find Full Text PDFIn the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal.
View Article and Find Full Text PDFPhysiological bone remodeling is a highly coordinated process responsible for bone resorption and formation and is necessary to repair damaged bone and to maintain mineral homeostasis. In addition to the traditional bone cells (osteoclasts, osteoblasts, and osteocytes) that are necessary for bone remodeling, several immune cells have also been implicated in bone disease. This minireview discusses physiological bone remodeling, outlining the traditional bone biology dogma in light of emerging osteoimmunology data.
View Article and Find Full Text PDFMutations in the FBN1 gene, encoding the extracellular matrix protein fibrillin-1, result in the dominant connective tissue disease Marfan syndrome. Marfan syndrome has a variable phenotype, even within families carrying the same FBN1 mutation. Differences in gene expression resulting from sequence differences in the promoter region of the FBN1 gene are likely to be involved in causing this phenotypic variability.
View Article and Find Full Text PDFWe have quantified the relative contribution of donor antigen-presenting cell populations to alloantigen presentation after bone marrow transplantation (BMT) by using transgenic T cells that can respond to host-derived alloantigen presented within the donor major histocompatibility complex. We also used additional transgenic/knockout donor mice and/or monoclonal antibodies that allowed conditional depletion of conventional dendritic cells (cDCs), plasmacytoid DC (pDCs), macrophages, or B cells. Using these systems, we demonstrate that donor cDCs are the critical population presenting alloantigen after BMT, whereas pDCs and macrophages do not make a significant contribution in isolation.
View Article and Find Full Text PDFOsteoimmunological interactions are central to maintaining bone homeostasis and are key mechanisms in bone pathology. Macrophages are highly adaptable cells with pleiotropic actions. They have important roles in development, homeostasis and both innate and adaptive immunity.
View Article and Find Full Text PDFResident macrophages are an integral component of many tissues and are important in homeostasis and repair. This study examines the contribution of resident tissue macrophages to bone physiology. Using immunohistochemistry, we showed that a discrete population of resident macrophages, OsteoMacs, was intercalated throughout murine and human osteal tissues.
View Article and Find Full Text PDFMicrophthalmia transcription factor (MITF) regulates bone homeostasis by inducing expression of critical genes associated with osteoclast function. Gpnmb is a macrophage-enriched gene that has also been shown to be expressed in osteoblasts. Here, we have shown gpnmb to be highly induced in maturing murine osteoclasts.
View Article and Find Full Text PDFInterleukin-18 (IL-18) can regulate osteoblast and osteoclast function. We have identified, using cDNA microarray technology, that IL-18 expression is increased in UMR 106-01 rat osteoblastic cells in response to parathyroid hormone (PTH) treatment. Confirmation of these data using real-time reverse transcription-PCR showed that steady-state levels of IL-18 mRNA increased by 2 h (3-fold), peaked by 4 h (10-fold), and had diminished after 12 h (4.
View Article and Find Full Text PDF