Publications by authors named "Ragesh Kumar T P"

We report a combined experimental and theoretical investigation of electron-molecule interactions using pyrrole as a model system. Experimental two-dimensional electron energy loss spectra (EELS) encode information about the vibrational states of the molecule as well as the position and structure of electronic resonances. The calculations using complex-valued extensions of equation-of-motion coupled-cluster theory (based on non-Hermitian quantum mechanics) facilitate the assignment of all major EELS features.

View Article and Find Full Text PDF

We experimentally show that N-H bond cleavage in the pyrrole molecule following resonant electron attachment is allowed and controlled by the motion of the atoms which are not dissociating, namely, of the carbon-attached hydrogen atoms. We use this fact to steer the efficiency of this bond cleavage. In order to interpret the experimental findings, we have developed a method for locating all resonant and virtual states of an electron-molecule system in the complex plane, based on all-electron R-matrix scattering calculations.

View Article and Find Full Text PDF

We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries.

View Article and Find Full Text PDF

Pyruvic acid represents a key molecule in prebiotic chemistry and it has recently been proposed to be synthesized on interstellar ices. In order to probe the stability of pyruvic acid in the interstellar medium with respect to decomposition by slow electrons, we investigate the electron attachment to its homomolecular and heteromolecular clusters. Using mass spectrometry, we follow the changes in the fragmentation pattern and its dependence on the electron energy for various cluster sizes of pure and microhydrated pyruvic acid.

View Article and Find Full Text PDF

We probe the transient anion states (resonances) in the dielectric gas CFN by the electron energy loss spectroscopy and the dissociative electron attachment spectroscopy. The vibrationally inelastic electron scattering leads to two excitation types. The first is the excitation of specific vibrational modes that are assigned with the help of an infrared spectrum of this molecule and quantum chemistry calculations.

View Article and Find Full Text PDF

Electronic resonances commonly decay via internal conversion to vibrationally hot anions and subsequent statistical electron emission. We observed vibrational structure in such an emission from the nitrobenzene anion, in both the 2D electron energy loss and 2D photoelectron spectroscopy of the neutral and anion, respectively. The emission peaks could be correlated with calculated nonadiabatic coupling elements for vibrational modes to the electronic continuum from a nonvalence dipole-bound state.

View Article and Find Full Text PDF

We probe the low-energy electron collisions with methyl formate HCOOCH3, focusing on its resonant states. Experimentally, we (i) use two-dimensional electron energy loss spectroscopy to gain information about the vibrational excitation and (ii) report the absolute dissociative electron attachment cross sections. The electron scattering spectra reveal both the threshold effects due to the long-range electron-molecule interaction and a pronounced π* resonance centered around 2.

View Article and Find Full Text PDF

In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex HFeRu(CO) covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.

View Article and Find Full Text PDF

We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions.

View Article and Find Full Text PDF

In single electron collisions with the heteronuclear metal carbonyl compound HFeCo(CO) we observe the formation of long-lived negative ion states up to about 20 eV, 11 eV above its ionization energy. These transient negative ions (TNIs) relax through dissociation (dissociative electron attachment, DEA), losing up to all 12 CO ligands, demonstrating their resilience towards reemission of the captured electron - even at such very high energies. This is unique in DEA and we hypothesize that this phenomenon is rooted in the orbital structure enabling a scaffold of multi-particle, electronically excited resonances.

View Article and Find Full Text PDF

Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione4ekk21blabgtd9okas2hsdg2lr724m0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once