The photocatalytic activity of semiconducting silver carbonate was restricted by the lower stability and fast recombination rate of photogenerated electron-hole pairs. Sulfur-doped graphene oxide (SGO) is used as a cocatalyst for improving the photocatalytic activity of AgCO by reducing the recombination rate. A simple precipitation method was used for the modification of silver carbonate.
View Article and Find Full Text PDFMetal ions play a very important role in environmental as well as biological fields. The detection of specific metal ions at a minute level caught much attention, and hence, several probes are available in the literature. Even though benzothiazole-based molecules have a special place in the medicinal field, only very few chemosensors are reported based on this moiety.
View Article and Find Full Text PDFThe sulfur-doped graphene oxide (sGO)-integrated AgPO composite displayed very high catalytic activity toward prominent water pollutants like textile dyes and fungicide under sunlight. The optimum amount of sGO doping was found as 5% for degradation. The novel composite degraded 99% of methylene blue (MB) in only 5 min of sunlight exposure, which is 16 and 8 times faster than AgPO and 5% GO-AgPO.
View Article and Find Full Text PDFA semiconductor photocatalyst was prepared in facile, standard conditions by integrating 1% metal-free, sulphur-doped graphene oxide (sGO) as cocatalyst and AgVO as photocatalyst and characterised via spectroscopic, microscopic and voltammetric techniques. The catalytic activity was performed on notable water pollutants like textile dyes and fungicide employing various techniques. Cationic dyes such as methylene blue and rhodamine B were degraded > 99% with above 90% organic carbon content removal indicating total mineralisation while anionic dyes were degraded 75-80% in 1 h.
View Article and Find Full Text PDFThe synthesis and optical properties of four new triarylborane-dipyrromethane (TAB-DPM) conjugates (3a-d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F(-) ion. The NMR titrations show that the anions bind to the TAB-DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.
View Article and Find Full Text PDF