Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease. Accurately predicting the survival time for ALS patients can help patients and clinicians to plan for future treatment and care. We describe the application of a machine-learned tool that incorporates clinical features and cortical thickness from brain magnetic resonance (MR) images to estimate the time until a composite respiratory failure event for ALS patients, and presents the prediction as individual survival distributions (ISDs).
View Article and Find Full Text PDFDeep learning has become a leading subset of machine learning and has been successfully employed in diverse areas, ranging from natural language processing to medical image analysis. In medical imaging, researchers have progressively turned towards multi-center neuroimaging studies to address complex questions in neuroscience, leveraging larger sample sizes and aiming to enhance the accuracy of deep learning models. However, variations in image pixel/voxel characteristics can arise between centers due to factors including differences in magnetic resonance imaging scanners.
View Article and Find Full Text PDFIn medical research and clinical applications, the utilization of MRI datasets from multiple centers has become increasingly prevalent. However, inherent variability between these centers presents challenges due to domain shift, which can impact the quality and reliability of the analysis. Regrettably, the absence of adequate tools for domain shift analysis hinders the development and validation of domain adaptation and harmonization techniques.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2023
Conventional deconvolution methods utilize hand-crafted image priors to constrain the optimization. While deep-learning-based methods have simplified the optimization by end-to-end training, they fail to generalize well to blurs unseen in the training dataset. Thus, training image-specific models is important for higher generalization.
View Article and Find Full Text PDFThe improper circulation of blood flow inside the retinal vessel is the primary source of most of the optical disorders including partial vision loss and blindness. Accurate blood vessel segmentation of the retinal image is utilized for biometric identification, computer-assisted laser surgical procedure, automatic screening, and diagnosis of ophthalmologic diseases like Diabetic retinopathy, Age-related macular degeneration, Hypertensive retinopathy, and so on. Proper identification of retinal blood vessels at its early stage assists medical experts to take expedient treatment procedures which could mitigate potential vision loss.
View Article and Find Full Text PDF