One of the most debilitating symptoms of advanced Parkinson's disease is drooling. Currently, the main treatment that is offered for drooling is botulinum toxin injections to the saliva glands which have a number of side effects and do not treat the causes of drooling, such as impaired swallowing and lip closure. This study explored the effect of an alternative therapy approach for drooling that aimed at improving the swallow, expiratory muscle strength training (EMST).
View Article and Find Full Text PDFAccumulating evidence has demonstrated that post-stroke physical rehabilitation may reduce morbidity. The effectiveness of post-stroke exercise, however, appears to be contingent upon exercise initiation. This study assessed the hypothesis that very early exercise exacerbates brain injury, induces reactive oxygen species (ROS) generation, and promotes energy failure.
View Article and Find Full Text PDFObjectives: Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide and, in particular, has been implicated as a leading cause of recurrent ischemic stroke. We adapted a rat model of atherosclerosis to study brain intracranial atherosclerosis, and further investigated the effect of omega-3 fatty acids (O3FA) in attenuating development of ICAS.
Materials And Methods: Adult male Sprague-Dawley rats were divided into control normal-cholesterol or high-cholesterol diet groups with or without O3FA for up to 6weeks.
Pyruvate dehydrogenase complex (PDH) is a brain mitochondrial matrix enzyme. PDH impairment after stroke is particularly devastating given PDH's critical role in the link between anaerobic and aerobic metabolism. This study evaluates the restoration of oxidative metabolism and energy regulation with a therapeutic combination of normobaric oxygen (NBO) plus either therapeutic hypothermia (TH) or ethanol.
View Article and Find Full Text PDFIn a thromboembolic stroke model after reperfusion by recombinant tissue plasminogen activator (rt-PA), we aimed to determine whether therapeutic hypothermia (TH) and ethanol (EtOH) in combination with low concentration (60 %) of normobaric oxygen (NBO) enhanced neuroprotection, as compared to using each of these agents alone. We further aimed to elucidate a potential role of the NADPH oxidase (NOX), phosphorylated protein kinase B (Akt), and protein kinase C-δ (PKC-δ) pathway in oxidative stress and neuroprotection. In Sprague-Dawley rats, a focal middle cerebral artery (MCA) occlusion was induced by an autologous embolus in the following experimental groups: rt-PA treatment alone, rt-PA + NBO treatment, rt-PA + TH at 33 °C, rt-PA + EtOH, rt-PA + NBO + EtOH, rt-PA + NBO + TH, rt-PA + NOX inhibitor, rt-PA + EtOH + NOX inhibitor, or rt-PA + EtOH + Akt inhibitor.
View Article and Find Full Text PDFBackground And Purpose: Normobaric oxygen (NBO), ethanol (EtOH), and therapeutic hypothermia (TH) delivered alone or in combination have neuroprotective properties after acute stroke. We used an autologous thromboembolic rat stroke model to assess the additive effects of these treatments for reducing the deleterious effects of hyperglycolysis post-stroke in which reperfusion is induced with recombinant tissue plasminogen activator (rt-PA).
Methods: Sprague-Dawley rats were subjected to middle cerebral artery (MCA) occlusion with an autologous embolus.
Background And Purpose: Our lab has previously elucidated the neuroprotective effects of normobaric oxygen (NBO) and ethanol (EtOH) in ischemic stroke. The present study further evaluated the effect of EtOH or hypothermia (Hypo) in the presence of low concentration of NBO and determined whether EtOH can substitute hypothermia in a more clinically relevant autologous embolus rat stroke model in which reperfusion was established by tissue-type plasminogen activator (t-PA).
Methods: At 1h of middle cerebral artery occlusion (MCAO) by an autologous embolus, rats received t-PA.
Objectives: Neuroprotective benefits of ethanol (EtOH) and normobaric oxygenation (NBO) were previously demonstrated in transient and permanent ischemic stroke. Here we sought to identify whether the enhanced lactic acidosis and increased expression of monocarboxylate transporters (MCTs) observed after stroke might be attenuated by single and/or combined EtOH and NBO therapies.
Methods: Sprague-Dawley rats (n=96) were subjected to right middle cerebral artery occlusion (MCAO) for 2 or 4h (transient ischemia), or 28 h (permanent ischemia) followed by 3, 24h, or no reperfusion.
Background And Purpose: Ischemic stroke induces metabolic disarray. A central regulatory site, pyruvate dehydrogeanse complex (PDHC) sits at the cross-roads of 2 fundamental metabolic pathways: aerobic and anaerobic. In this study, we combined ethanol (EtOH) and normobaric oxygen (NBO) to develop a novel treatment to modulate PDHC and its regulatory proteins, namely pyruvate dehydrogenase phosphatase and pyruvate dehydrogenase kinase, leading to improved metabolism and reduced oxidative damage.
View Article and Find Full Text PDFTo determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliorate the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation.
View Article and Find Full Text PDFBackground And Purpose: The effect of normobaric oxygen (NBO) on apoptosis remains controversial. The present study evaluated the effect of NBO on ischemia-induced apoptosis and assessed the potential for improved outcomes by combining NBO administration with another neuroprotective agent, ethanol, in a rat stroke model.
Methods: Rats were subjected to right middle cerebral artery occlusion (MCAO) for 2h.
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis.
View Article and Find Full Text PDFPost-ischemia ethanol (EtOH) treatments have been shown to exhibit neuroprotective effects in stroke. However, the mechanisms underlying these effects and those on blood-brain barrier (BBB) integrity have yet to be elucidated. In the present study, we determined whether administering differing concentrations of EtOH alter the expressions of BBB integral proteins, including aquaporins-4 and -9 (AQP-4, AQP-9), matrix metallopeptidases-2 and -9 (MMP-2, MMP-9), zonula occludens-1 (ZO-1), and basal lamina (laminin).
View Article and Find Full Text PDFObject: Previous studies have demonstrated that traumatic brain injury (TBI) causes brain edema by allowing excessive water passage through aquaporin (AQP) proteins. To establish the potential neuroprotective properties of ethanol as a post-TBI therapy, in the present study the authors determined the effect of ethanol on brain edema, AQP expression, and functional outcomes in a post-TBI setting.
Methods: Adult male Sprague-Dawley rats weighing between 425 and 475 g received a closed head TBI in which Maramarou's impact-acceleration method was used.
The present study, using a rodent model of closed-head diffuse traumatic brain injury (TBI), investigated the role of dysregulated aquaporins (AQP) 4 and 9, as well as hypoxia inducible factor -1α(HIF-1α) on brain edema formation, neuronal injury, and functional deficits. TBI was induced in adult (400-425 g), male Sprague-Dawley rats using a modified Marmarou's head impact-acceleration device (450 g weight dropped from 2m height). Animals in each treatment group were administered intravenous anti-AQP4 or -AQP9 antibodies or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) 30 min after injury.
View Article and Find Full Text PDFTraumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation.
View Article and Find Full Text PDFObjectives: The purpose of this study was to test the efficacy of a novel endothelin receptor A antagonist on blood flow and behavioral outcome given 30 minutes following traumatic brain injury.
Methods: Male Sprague-Dawley rats (400-450 g) were used in this study. All animals were scanned for initial blood flow using arterial spin labeling magnetic resonance imaging (n = 72 total).
Objectives: Previously we have reported that endothelin receptor A and B antagonists elicit differential effects on cerebral blood flow and cellular damage. In summary, endothelin receptor A antagonists restore microcirculation and diminish cellular damage after injury, while endothelin receptor B antagonists had no effect on either parameter. However, what is not known is the effect of either antagonist on behavioral outcome.
View Article and Find Full Text PDFObjectives: While endothelin-1 and its receptors have traditionally been associated with mediating vasoreactivity, we have recently shown that the vast majority of endothelin receptor A expression following traumatic brain injury is localized within the neuron. While it has been suggested that endothelin receptor A plays a role in influencing neuronal integrity, the significance of neuronally expressed endothelin receptor A remains unclear. One report suggests that endothelin-1 signaling mediates diffuse axonal injury.
View Article and Find Full Text PDFObjectives: Endothelin-1 is a 21-amino acid peptide that together with specific receptors, A (ETrA) and B (ETrB) is induced following traumatic brain injury (TBI) and has been closely linked to regulation of cerebral vasospasm, oxidative stress, and hypoperfusion. Specific endothelin receptor antagonists have been shown to ameliorate early evidence of neuronal cell injury, activation of microglial cells, and hypoperfusion following TBI. The exact mechanism involved in TBI-induced hypoperfusion is still unclear; however, it is thought that endothelin-1 engagement of ETrA is primarily responsible for changes in blood flow.
View Article and Find Full Text PDFObjectives: The syntheses of endothelin receptors A and B were previously shown to be upregulated in rat dorsal hippocampus after traumatic brain injury. Here we characterize endothelin receptor A and endothelin receptor B cellular distribution in hippocampus after permanent global brain ischemia and their possible association to nerve cell injury.
Methods: Twenty-minute global ischemia was induced using the Pulsinelli's four-vessel occlusion in conjunction with systemic hypovolemia in male rats.