Recent advances in addressing isolated nuclear spins have opened up a path toward using nuclear-spin-based quantum bits. Local magnetic fields are normally used to coherently manipulate the state of the nuclear spin; however, electrical manipulation would allow for fast switching and spatially confined spin control. Here, we propose and demonstrate coherent single nuclear spin manipulation using electric fields only.
View Article and Find Full Text PDFThe mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca.
View Article and Find Full Text PDFNumerous compounds in which a paramagnetic LnIII ion is in an exchange interaction with a second spin carrier, such as a transition metal ion or an organic radical, have been described. However, except for GdIII, very little has been reported about the magnitude of the interactions. Indeed, for these ions both the ligand-field effects and the exchange interactions between the magnetic centers become relevant in the same temperature range; this makes the analysis of the magnetic behavior of such compounds more difficult.
View Article and Find Full Text PDF