Organic-based photovoltaics are excellent candidates for renewable energy alternatives to fossil fuels due to their low weight, low manufacturing cost, and, in recent years, high efficiency, which is now above 18%. However, one cannot ignore the environmental price of the fabrication procedure due to the usage of toxic solvents and high-energy input equipment. In this work, we report on the enhancement of the power conversion efficiency non-fullerene organic solar cells by incorporating green synthesised Au-Ag nanoparticles, using onion bulb extract, into the hole transport layer poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS) of Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3 fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (PTB7-Th: ITIC) bulk-heterojunction organic solar cells.
View Article and Find Full Text PDFBiosens Bioelectron
August 2022
Dopamine (DA) and epinephrine (EN) are two phenolic molecules that are used in the human body and secreted in the brain actuating as neurotransmitters. As both molecules are highly important in the brain and the central nervous system, monitoring of their concentrations would enable better understanding of their importance and role in different physiological conditions. Copper efflux oxidase from Escherichia coli was shown in the past to have the ability of oxidizing polyphenolic compounds.
View Article and Find Full Text PDFTwo novel symmetrical bis-azobenzene red dyes ending with electron-withdrawing or donor groups were synthesized. Both chromophores display good solubility, excellent chemical, and thermal stability. The two dyes are fluorescent in solution and in the solid-state.
View Article and Find Full Text PDFLow cost short wavelength infrared (SWIR) photovoltaic (PV) detectors and solar cells are of very great interest, yet the main production technology today is based on costly epitaxial growth of InGaAs layers. In this study, layers of p-type, quantum confined (QC) PbS nano-domains (NDs) structure that were engineered to absorb SWIR light at 1550 nm (Eg = 0.8 eV) were fabricated from solution using the chemical bath deposition (CBD) technique.
View Article and Find Full Text PDFResonant cavity-assisted enhancement of optical absorption was a photodetector designing concept emerging about two and half decades ago that responded to the challenge of thinning the photoactive layer while outperforming the efficiency of the monolithic photodetector. However, for many relevant materials, meeting that challenge with such a design unrealistically requires many layer deposition steps, so that the efficiency at goal hardly becomes attainable because of inevitable fabrication faults. Under this circumstance, we suggest a new approach for designing photodetectors with an absorber layer as thin as those in respective resonant cavity-enhanced ones, but concurrently, the overall detector thickness would be much thinner and top-performing.
View Article and Find Full Text PDFFrom a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes.
View Article and Find Full Text PDFMulticolor, fluorescent self-healing gels were constructed through reacting carbon dots produced from different aldehyde precursors with branched polyethylenimine. The self-healing gels were formed through Schiff base reaction between the aldehyde units displayed upon the carbon dots' surface and primary amine residues within the polyethylenimine network, generating imine bonds. The dynamic covalent imine bonds between the carbon dots and polymeric matrix endowed the gels with both excellent self-healing properties as well as high mechanical strength.
View Article and Find Full Text PDFThe effects of aggregation-induced emission (AIE) and of aggregation caused quenching (ACQ) were observed and discussed on two solid materials based on a phenylenevinylene (PV) and a dicyano-PV structure. The brightest emitter in solid films shows a high fluorescence quantum yield in the deep red/near IR (DR/NIR) region (75%). The spectroscopic properties of the two crystalline solids have been described and compared in terms of crystallographic data and time dependent DFT analysis.
View Article and Find Full Text PDFAn efficient deep red (DR)-emitting organic solid based on a dicyano-phenylenevinylene derivative was reported. The structural and spectroscopic properties of the solid have been described in terms of crystallographic data and time-dependent DFT analysis. A noteworthy fluorescence quantum yield of 53% was observed for the brightest emitter cast into solid films.
View Article and Find Full Text PDFCorrection for 'Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis' by Susanta Kumar Bhunia, et al., Nanoscale, 2016, 8, 3400-3406.
View Article and Find Full Text PDFDevelopment of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles.
View Article and Find Full Text PDFWe present a microscopic study of photoinduced charge generation in polyfluorene-based photovoltaic structures. The sub-100 nm lateral resolution of scanning Kelvin probe microscopy allows characterizing the three-dimensional structure of thin films of blends of poly-(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly-(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). From the strong correlation between surface photovoltage and blend morphology, we propose a simple model for the lateral and vertical film structure identifying in particular those regions with the most efficient conduction pathway for the photocurrent.
View Article and Find Full Text PDF